[1] |
杜民权, 李臻, 江汉, 等. 我国3-5岁儿童龋病状况及影响因素[Z]. 2018年中华口腔医学会第十八次口腔预防医学学术年会论文汇编, 2018: 23.
|
|
Du MQ, Li Z, Jiang H, et al. Caries status and influencing factors of 3-5-year-old children in China[Z]. Proceedings of the 18th Annual Meeting of the Chinese Stomatological Association for Preventive Oral Medicine 2018,2018:23.
|
[2] |
Marsh PD. Microbiology of dental plaque biofilms and their role in oral health and caries[J]. Dent Clin North Am, 2010,54(3):441-454. doi: 10.1016/j.cden.2010.03.002.
URL
PMID
|
[3] |
Takahashi N, Nyvad B. Ecological hypojournal of dentin and root caries[J]. Caries Res, 2016,50(4):422-431. doi: 10.1038/sj.bdj.2016.732.
URL
PMID
|
[4] |
Utter DR, Mark WJ, Borisy GG. Individuality, stability, and variability of the plaque microbiome[J]. Front Microbiol, 2016,7:564. doi: 10.3389/fmicb.2016.00564.
URL
PMID
|
[5] |
Tao Y, Zhou Y, Ouyang Y, et al. Dynamics of oral microbial community profiling during severe early childhood caries development monitored by PCR-DGGE[J]. Arch Oral Biol, 2013,58(9):1129-1138. doi: 10.1016/j.archoralbio.2013.04.005.
|
[6] |
肖小芬, 何姗丹, 陈泳怡, 等. 不同龋敏感程度学龄前儿童的牙菌斑微生物群落研究[J]. 口腔疾病防治, 2019,25(12):763-768. doi: 10.12016/j.issn.2096-1456.2019.12.003.
|
|
Xiao XF, He SD, Chen YY, et al. Study on the plaque microbial community of preschool children with different caries sensitivity[J]. J Prev Treatment Stomatol Dis, 2019,25(12):763-768. doi: 10.12016/j.issn.2096-1456.2019.12.003.
|
[7] |
阮文华, 黄美丽, 高其康, 等. 基于唾液宏蛋白质组学的重度低龄儿童龋患者唾液微生物群落分析[J]. 口腔医学, 2019,39(8):673-678. doi: 10.13591/j.cnki.kqyx.2019.08.001.
|
|
Ruan WH, Huang ML, Gao QK, et al. Salivary microbial community structure in the children with severe early childhood caries: metaproteomics study[J]. Stomatology, 2019,39(8):673-678. doi: 10.13591/j.cnki.kqyx.2019.08.001.
|
[8] |
Xu L, Chen X, Wang Y, et al. Dynamic alterations in salivary microbiota related to dental caries and age in preschool children with deciduous dentition: a 2-year follow-up study[J]. Front Physiol, 2018,9:342. doi: 10.3389/fphys.2018.00342.
URL
PMID
|
[9] |
黄春雅, 卢晓慧, 严春华. 龋病和无龋儿童牙菌斑内细菌菌属的差异性研究[J]. 南通大学学报(医学版), 2018,38(5):360-361. doi: 10.16424/j.cnki.cn32-1807/r.2018.05.014.
|
|
Huang CY, Lu XH, Yan CH. Study on the difference of bacteria in dental plaque between caries and non caries children[J]. J Nantong Univ (Med Sci), 2018,38(5):360-361. doi: 10.16424/j.cnki.cn32-1807/r.2018.05.014.
|
[10] |
Hurley E, Barrett M, Kinirons M, et al. Comparison of the salivary and dentinal microbiome of children with severe-early childhood caries to the salivary microbiome of caries-free children[J]. BMC Oral Health, 2019,19(1):13. doi: 10.1186/s12903-018-0693-1.
DOI
URL
PMID
|
[11] |
Gross EL, Leys EJ, Gasparovich SR, et al. Bacterial 16S sequence analysis of severe caries in young permanent teeth[J]. J Clin Microbiol, 2010,48(11):4121-4128. doi: 10.1128/JCM.01232-10.
|
[12] |
Tian J, Qin M, Ma W, et al. Microbiome interaction with sugar plays an important role in relapse of childhood caries[J]. Biochem Biophys Res Commun, 2015,468(1/2):294-299. doi: 10.1016/j.bbrc.2015.10.110.
|
[13] |
Hao W, Xu H, Chen X, et al. Changes in dental plaque microbial richness and oral behavioral habits during caries development in young Chinese children[J]. Caries Res, 2015,49(2):116-123. doi: 10.1159/000366505.
DOI
URL
PMID
|
[14] |
Teng F, Yang F, Huang S, et al. Prediction of early childhood caries via spatial-temporal variations of oral microbiota[J]. Cell Host Microbe, 2015,18(3):296-306. doi: 10.1016/j.chom.2015.08.005.
URL
PMID
|
[15] |
颜正豪. 16S rDNA测序研究不同龋病状况儿童的牙菌斑微生物群落结构及多样性[D]. 济南: 山东大学, 2016.
|
|
Yan ZH. Analysis of microbial community stucture and diversity in dental plaque of different carious situations of children by 16S rDNA identification[D]. Jinan: Shandong University, 2016.
|
[16] |
Xiao C, Ran S, Huang Z, et al. Bacterial diversity and community structure of supragingival plaques in adults with dental health or caries revealed by 16S pyrosequencing[J]. Front Microbiol, 2016,7:1145. doi: 10.3389/fmicb.2016.01145.
|
[17] |
Johansson I, Witkowska E, Kaveh B, et al. The microbiome in populations with a low and high prevalence of caries[J]. J Dent Res, 2016,95(1):80-86. doi: 10.1177/0022034515609554.
|
[18] |
Richards VP, Alvarez AJ, Luce AR, et al. Microbiomes of site-specific dental plaques from children with different caries status[J]. Infect Immun, 2017,85(8):e00106-e00117. doi: 10.1128/IAI. 00106-17.
|
[19] |
Solbiati J, Frias-Lopez J. Metatranscriptome of the oral microbiome in health and disease[J]. J Dent Res, 2018,97(5):492-500. doi: 10.1177/0022034518761644.
DOI
URL
PMID
|
[20] |
Agnello M, Marques J, Cen L, et al. Microbiome associated with severe caries in Canadian first nations children[J]. J Dent Res, 2017,96(12):1378-1385. doi: 10.1177/0022034517718819.
URL
PMID
|
[21] |
Chen T, Shi Y, Wang X, et al. Highthroughput sequencing analyses of oral microbial diversity in healthy people and patients with dental caries and periodontal disease[J]. Mol Med Rep, 2017,16(1):127-132. doi: 10.3892/mmr.2017.6593.
URL
PMID
|
[22] |
Tanner AR, Kressirer CA, Faller LL. Understanding caries from the oral microbiome perspective[J]. J Calif Dent Assoc, 2016,44(7):437-446.
URL
PMID
|
[23] |
Kassebaum NJ, Smith A, Bernabe E, et al. Global, regional, and national prevalence, incidence, and disability-adjusted life years for oral conditions for 195 countries, 1990-2015: a systematic analysis for the global burden of diseases, injuries, and risk factors[J]. J Dent Res, 2017,96(4):380-387. doi: 10.1177/002203451 7693566.
DOI
URL
PMID
|
[24] |
Gross EL, Beall CJ, Kutsch SR, et al. Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis[J]. PLoS One, 2012,7(10):e47722. doi: 10.1371/journal.pone.0047722.
DOI
URL
PMID
|
[25] |
Lee HS, Lee JH, Kim SO, et al. Comparison of the oral microbiome of siblings using next-generation sequencing: a pilot study[J]. Oral Dis, 2016,22(6):549-556. doi: 10.1111/odi.12491.
URL
PMID
|
[26] |
Wang Y, Zhang J, Chen X, et al. Profiling of oral microbiota in early childhood caries using single-molecule real-time sequencing[J]. Front Microbiol, 2017,8:2244. doi: 10.3389/fmicb.2017.02244.
DOI
URL
PMID
|
[27] |
Sidhu GK, Mantha S, Murthi S, et al. Evaluation of Lactobacillus and Streptococcus mutans by addition of probiotics in the form of curd in the diet[J]. J Int Oral Health, 2015,7(7):85-89.
URL
PMID
|
[28] |
Jiang S, Gao X, Jin L, et al. Salivary microbiome diversity in caries-free and caries-affected children[J]. Int J Mol Sci, 2016,17(12):1978. doi: 10.3390/ijms17121978.
|
[29] |
Zhou J, Jiang N, Wang S, et al. Exploration of human salivary microbiomes--insights into the novel characteristics of microbial community structure in caries and caries-free subjects[J]. PLoS One, 2016,11(1):e147039. doi: 10.1371/journal.pone.0147039.
|
[30] |
Do T, Sheehy EC, Mulli T, et al. Transcriptomic analysis of three Veillonella spp. present in carious dentine and in the saliva of caries-free individuals[J]. Front Cell Infect Microbiol, 2015: 25. doi: 10.3389/fcimb.2015.00025.
|
[31] |
Bowen WH, Burne RA, Wu H, et al. Oral Biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments[J]. Trends Microbiol, 2018,26(3):229-242. doi: 10.1016/j.tim.2017. 09.008.
DOI
URL
PMID
|
[32] |
Knapp S, Brodal C, Peterson J, et al. Natural competence is common among clinical isolates of Veillonella parvula and is useful for genetic manipulation of this key member of the oral microbiome[J]. Front Cell Infect Microbiol, 2017,7:139. doi: 10.3389/fcimb. 2017.00139. eCollection 2017.
|
[33] |
Zhu C, Yuan C, Ao S, et al. The predictive potentiality of salivary microbiome for the recurrence of early childhood caries[J]. Front Cell Infect Microbiol, 2018,8:423. doi: 10.3389/fcimb.2018.00423.
|