Journal of Prevention and Treatment for Stomatological Diseases ›› 2021, Vol. 29 ›› Issue (2): 124-129.doi: 10.12016/j.issn.2096-1456.2021.02.010

• Review Articles • Previous Articles     Next Articles

The role of Toll-like receptors in chemoradiotherapy-induced gastrointestinal mucositis

JI Ling1(),WANG Jiahe1,WANG Jiantao2,Wang Yan3()   

  1. 1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
    2. State key Laboratory of Biotherapy & Department of Lung Cancer Center and Department of Radiation Oncology & West China Hospital, Sichuan University, Chengdu 610041, China
    3. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2020-05-18 Revised:2020-07-18 Online:2021-02-20 Published:2020-12-21
  • Contact: Yan Wang E-mail:417978541@qq.com;wangyan1458@scu.edu.cn
  • Supported by:
    grants from National Natural Science Foundation of China(81600864);Scientific Research Foundation of the Health Planning Committee of Sichuan(18PJ186)

Abstract:

Mucositis is a common gastrointestinal complication in cancer patients undergoing chemoradiotherapy, including oral mucositis and gastrointestinal mucositis, with clinical manifestations of oral ulcers, vomiting, diarrhea and pain that seriously reduce the quality of life of patients and even affect anticancer therapy. Toll-like receptor (TLR) are important receptors involved in innate immunity and in the development of chemoradiation-induced mucositis by mediating the effect between microorganisms and the host. A comprehensive understanding of the role of TLR in mucositis is helpful to guide the prevention and treatment of mucositis. This paper reviews the available studies on TLR and mucositis. The results of the literature review indicate that different TLR have different roles in chemoradiation-induced mucositis: TLR2 is an important receptor in the inflammatory cascade of chemoradiation-induced mucositis; TLR4 activation can increase gastrointestinal mucosal inflammation and lead to oral epithelial ulceration; TLR5 agonists can reduce the degree of radiation-induced mucositis damage; and antagonizing or knocking out TLR9 can reduce chemoradiation-induced gastrointestinal mucositis. However, no TLR agonists or inhibitors have yet been applied in clinical practice, and additional studies are needed to explore the role of different TLR in mucositis in the future to provide a reference for the precise prevention and treatment of chemoradiation-induced mucositis.

Key words: Toll-like receptor (TLR), Toll-like receptor (TLR), oral mucositis, gastrointestinal mucositis, oral mucositis, chemotherapy, gastrointestinal mucositis, radiotherapy, chemotherapy, TLR2, radiotherapy, TLR4, TLR2, TLR5, TLR4, TLR9, TLR5, TLR9

CLC Number: 

  • R781.5
[1] Thomsen M, Vitetta L. Adjunctive treatments for the prevention of chemotherapy- and radiotherapy-induced mucositis[J]. Integr Cancer Ther, 2018,17(4):1027-1047. doi: 10.1177/1534735418794885.
doi: 10.1177/1534735418794885 pmid: 30136590
Thomsen M, Vitetta L. Adjunctive treatments for the prevention of chemotherapy- and radiotherapy-induced mucositis[J]. Integr Cancer Ther, 2018,17(4):1027-1047. doi: 10.1177/1534735418794885.
doi: 10.1177/1534735418794885 pmid: 30136590
[2] 邹晓龙, 陈媛, 王艳, 等. 放化疗性口腔黏膜炎动物模型研究进展[J]. 口腔疾病防治, 2020,28(5):322-326. doi: 10.12016/j.issn.2096-1456.2020.05.010.
邹晓龙, 陈媛, 王艳, 等. 放化疗性口腔黏膜炎动物模型研究进展[J]. 口腔疾病防治, 2020,28(5):322-326. doi: 10.12016/j.issn.2096-1456.2020.05.010.
Zou XL, Chen Y, Wang Y, et al. Research progress on animal models of oral mucositis caused by radiotherapy and chemotherapy[J]. J Prev Treat Stomatol Dis, 2020,28(5):322-326. doi: 10.12016/j.issn.2096-1456.2020.05.010.
Zou XL, Chen Y, Wang Y, et al. Research progress on animal models of oral mucositis caused by radiotherapy and chemotherapy[J]. J Prev Treat Stomatol Dis, 2020,28(5):322-326. doi: 10.12016/j.issn.2096-1456.2020.05.010.
[3] McCall KD, Muccioli M, Benencia F. Toll-like receptors signaling in the tumor microenvironment[J]. Adv Exp Med Biol, 2020,1223:81-97. doi: 10.1007/978-3-030-35582-1_5.
doi: 10.1007/978-3-030-35582-1_5 pmid: 32030686
McCall KD, Muccioli M, Benencia F. Toll-like receptors signaling in the tumor microenvironment[J]. Adv Exp Med Biol, 2020,1223:81-97. doi: 10.1007/978-3-030-35582-1_5.
doi: 10.1007/978-3-030-35582-1_5 pmid: 32030686
[4] Arikapudi S, Rashid S, Al Almomani LA, et al. Serum bovine immunoglobulin for chemotherapy-induced gastrointestinal mucositis[J]. Am J Hosp Palliat Care, 2018,35(5):814-817. doi: 10.1177/1049909117735831.
doi: 10.1177/1049909117735831 pmid: 29020798
Arikapudi S, Rashid S, Al Almomani LA, et al. Serum bovine immunoglobulin for chemotherapy-induced gastrointestinal mucositis[J]. Am J Hosp Palliat Care, 2018,35(5):814-817. doi: 10.1177/1049909117735831.
doi: 10.1177/1049909117735831 pmid: 29020798
[5] Cinausero M, Aprile G, Ermacora P, et al. New frontiers in the pathobiology and treatment of cancer regimen-related mucosal injury[J]. Front Pharmacol, 2017,8:354. doi: 10.3389/fphar.2017. 00354.
doi: 10.3389/fphar.2017.00354 pmid: 28642709
Cinausero M, Aprile G, Ermacora P, et al. New frontiers in the pathobiology and treatment of cancer regimen-related mucosal injury[J]. Front Pharmacol, 2017,8:354. doi: 10.3389/fphar.2017. 00354.
doi: 10.3389/fphar.2017.00354 pmid: 28642709
[6] Sobue T, Bertolini M, Thompson A, et al. Chemotherapy-induced oral mucositis and associated infections in a novel organotypic model[J]. Mol Oral Microbiol, 2018,33(3):212-223. doi: 10.1111/omi.12214.
doi: 10.1111/omi.12214 pmid: 29314782
Sobue T, Bertolini M, Thompson A, et al. Chemotherapy-induced oral mucositis and associated infections in a novel organotypic model[J]. Mol Oral Microbiol, 2018,33(3):212-223. doi: 10.1111/omi.12214.
doi: 10.1111/omi.12214 pmid: 29314782
[7] Daugėlaitž G, Užkuraitytė K, Jagelavičienė E, et al. Prevention and treatment of chemotherapy and radiotherapy induced oral mucositis[J]. Medicina (Kaunas), 2019,55(2):25. doi: 10.3390/medicina55020025.
Daugėlaitž G, Užkuraitytė K, Jagelavičienė E, et al. Prevention and treatment of chemotherapy and radiotherapy induced oral mucositis[J]. Medicina (Kaunas), 2019,55(2):25. doi: 10.3390/medicina55020025.
[8] Sonis ST. Oral mucositis[J]. Anticancer Drugs, 2011,22(7):607-612. doi: 10.1097/CAD.0b013e3283462086.
doi: 10.1097/CAD.0b013e3283462086 pmid: 21709615
Sonis ST. Oral mucositis[J]. Anticancer Drugs, 2011,22(7):607-612. doi: 10.1097/CAD.0b013e3283462086.
doi: 10.1097/CAD.0b013e3283462086 pmid: 21709615
[9] Vasconcelos RM, Sanfiloppo N, Paster BJ, et al. Host-microbiome cross-talk in oral mucositis[J]. J Den Res, 2016,95(7):725-733. doi: 10.1177/0022034516641890.
doi: 10.1177/0022034516641890
Vasconcelos RM, Sanfiloppo N, Paster BJ, et al. Host-microbiome cross-talk in oral mucositis[J]. J Den Res, 2016,95(7):725-733. doi: 10.1177/0022034516641890.
doi: 10.1177/0022034516641890
[10] Cario E. Toll-like receptors in the pathogenesis of chemotherapy-induced gastrointestinal toxicity[J]. Curr Opin Support Palliat Care, 2016,10(2):157-164. doi: 10.1097/SPC.0000000000000202.
doi: 10.1097/SPC.0000000000000202 pmid: 26986508
Cario E. Toll-like receptors in the pathogenesis of chemotherapy-induced gastrointestinal toxicity[J]. Curr Opin Support Palliat Care, 2016,10(2):157-164. doi: 10.1097/SPC.0000000000000202.
doi: 10.1097/SPC.0000000000000202 pmid: 26986508
[11] Hong BY, Sobue T, Choquette L, et al. Chemotherapy-induced oral mucositis is associated with detrimental bacterial dysbiosis[J]. Microbiome, 2019,7(1):66. doi: 10.1186/s40168-019-0679-5.
doi: 10.1186/s40168-019-0679-5 pmid: 31018870
Hong BY, Sobue T, Choquette L, et al. Chemotherapy-induced oral mucositis is associated with detrimental bacterial dysbiosis[J]. Microbiome, 2019,7(1):66. doi: 10.1186/s40168-019-0679-5.
doi: 10.1186/s40168-019-0679-5 pmid: 31018870
[12] Montassier E, Gastinne T, Vangay P, et al. Chemotherapy-driven dysbiosis in the intestinal microbiome[J]. Aliment Pharmacol Ther, 2015,42(5):515-528. doi: 10.1111/apt.13302.
doi: 10.1111/apt.13302 pmid: 26147207
Montassier E, Gastinne T, Vangay P, et al. Chemotherapy-driven dysbiosis in the intestinal microbiome[J]. Aliment Pharmacol Ther, 2015,42(5):515-528. doi: 10.1111/apt.13302.
doi: 10.1111/apt.13302 pmid: 26147207
[13] Wang Y, Zhou X, Xu X, et al. Oral microbiota: an overlooked etiology for chemotherapy-induced oral mucositis?[J]. J Formos Med Assoc, 2015,114(4):297-299. doi: 10.1016/j.jfma.2013.10.014.
doi: 10.1016/j.jfma.2013.10.014 pmid: 24268725
Wang Y, Zhou X, Xu X, et al. Oral microbiota: an overlooked etiology for chemotherapy-induced oral mucositis?[J]. J Formos Med Assoc, 2015,114(4):297-299. doi: 10.1016/j.jfma.2013.10.014.
doi: 10.1016/j.jfma.2013.10.014 pmid: 24268725
[14] Li Y, Deng SL, Lian ZX, et al. Roles of toll-like receptors in nitroxidative stress in mammals[J]. Cells, 2019,8(6):576. doi: 10.3390/cells8060576.
doi: 10.3390/cells8060576
Li Y, Deng SL, Lian ZX, et al. Roles of toll-like receptors in nitroxidative stress in mammals[J]. Cells, 2019,8(6):576. doi: 10.3390/cells8060576.
doi: 10.3390/cells8060576
[15] Anthoney N, Foldi I, Hidalgo A. Toll and toll-like receptor signalling in development [J]. Development, 2018, 145(9): dev156018. doi: 10.1242/dev.156018.
doi: 10.1242/dev.156018 pmid: 29695493
Anthoney N, Foldi I, Hidalgo A. Toll and toll-like receptor signalling in development [J]. Development, 2018, 145(9): dev156018. doi: 10.1242/dev.156018.
doi: 10.1242/dev.156018 pmid: 29695493
[16] Frosali S, Pagliari D, Gambassi G, et al. How the intricate interaction among toll-like receptors,microbiota, and intestinal immunity can influence gastrointestinal pathology[J]. J Immunol Res, 2015,2015:489821. doi: 10.1155/2015/489821.
doi: 10.1155/2015/489821 pmid: 26090491
Frosali S, Pagliari D, Gambassi G, et al. How the intricate interaction among toll-like receptors,microbiota, and intestinal immunity can influence gastrointestinal pathology[J]. J Immunol Res, 2015,2015:489821. doi: 10.1155/2015/489821.
doi: 10.1155/2015/489821 pmid: 26090491
[17] Hug H, Mohajeri G, La Fata G, et al. Toll-like receptors: regulators of the immune response in the human gut[J]. Nutrients, 2018,10(2):203. doi: 10.3390/nu10020203.
doi: 10.3390/nu10020203
Hug H, Mohajeri G, La Fata G, et al. Toll-like receptors: regulators of the immune response in the human gut[J]. Nutrients, 2018,10(2):203. doi: 10.3390/nu10020203.
doi: 10.3390/nu10020203
[18] Groeger S, Meyle J. Oral mucosal epithelial cells[J]. Front Immunol, 2019,10:208. doi: 10.3389/fimmu.2019.00208.
doi: 10.3389/fimmu.2019.00208 pmid: 30837987
Groeger S, Meyle J. Oral mucosal epithelial cells[J]. Front Immunol, 2019,10:208. doi: 10.3389/fimmu.2019.00208.
doi: 10.3389/fimmu.2019.00208 pmid: 30837987
[19] Chang CW, Lee HC, Li LH, et al. Fecal microbiota transplantation prevents intestinal injury, upregulation of toll-like receptors, and 5-fluorouracil/oxaliplatin-induced toxicity in colorectal cancer[J]. Int J Mol Sci, 2020,21(2):386. doi: 10.3390/ijms21020386.
doi: 10.3390/ijms21020386
Chang CW, Lee HC, Li LH, et al. Fecal microbiota transplantation prevents intestinal injury, upregulation of toll-like receptors, and 5-fluorouracil/oxaliplatin-induced toxicity in colorectal cancer[J]. Int J Mol Sci, 2020,21(2):386. doi: 10.3390/ijms21020386.
doi: 10.3390/ijms21020386
[20] Wong DV, Lima-Júnior RC, Carvalho CB, et al. The adaptor protein Myd88 is a key signaling molecule in the pathogenesis of irinotecan-induced intestinal mucositis[J]. PLoS One, 2015,10(10):e0139985. doi: 10.1371/journal.pone.0139985.
doi: 10.1371/journal.pone.0139985 pmid: 26440613
Wong DV, Lima-Júnior RC, Carvalho CB, et al. The adaptor protein Myd88 is a key signaling molecule in the pathogenesis of irinotecan-induced intestinal mucositis[J]. PLoS One, 2015,10(10):e0139985. doi: 10.1371/journal.pone.0139985.
doi: 10.1371/journal.pone.0139985 pmid: 26440613
[21] Frank M, Hennenberg EM, Eyking A, et al. TLR signaling modulates side effects of anticancer therapy in the small intestine[J]. J Immunol, 2015,194(4):1983-1995. doi: 10.4049/jimmunol. 1402481.
doi: 10.4049/jimmunol.1402481 pmid: 25589072
Frank M, Hennenberg EM, Eyking A, et al. TLR signaling modulates side effects of anticancer therapy in the small intestine[J]. J Immunol, 2015,194(4):1983-1995. doi: 10.4049/jimmunol. 1402481.
doi: 10.4049/jimmunol.1402481 pmid: 25589072
[22] Ribeiro RA, Wanderlye CW, Wong DV, et al. Irinotecan- and 5-fluorouracil-induced intestinal mucositis: insights into pathogenesis and therapeutic perspectives[J]. Cancer Chemother Pharmacol, 2016,78(5):881-893. doi: 10.1007/s00280-016-3139-y.
doi: 10.1007/s00280-016-3139-y pmid: 27590709
Ribeiro RA, Wanderlye CW, Wong DV, et al. Irinotecan- and 5-fluorouracil-induced intestinal mucositis: insights into pathogenesis and therapeutic perspectives[J]. Cancer Chemother Pharmacol, 2016,78(5):881-893. doi: 10.1007/s00280-016-3139-y.
doi: 10.1007/s00280-016-3139-y pmid: 27590709
[23] Villa A, Sonis ST. Pharmacotherapy for the management of cancer regimen-related oral mucositis[J]. Expert Opin Pharmacother, 2016,17(13):1801-1807. doi: 10.1080/14656566.2016.1217993.
doi: 10.1080/14656566.2016.1217993 pmid: 27477002
Villa A, Sonis ST. Pharmacotherapy for the management of cancer regimen-related oral mucositis[J]. Expert Opin Pharmacother, 2016,17(13):1801-1807. doi: 10.1080/14656566.2016.1217993.
doi: 10.1080/14656566.2016.1217993 pmid: 27477002
[24] Frings K, Gruber S, Kuess P, et al. Modulation of radiation-induced oral mucositis by thalidomide: Preclinical studies[J]. Strahlenther Onkol, 2016,192(8):561-568. doi: 10.1007/s00066-016-0989-5.
doi: 10.1007/s00066-016-0989-5 pmid: 27282278
Frings K, Gruber S, Kuess P, et al. Modulation of radiation-induced oral mucositis by thalidomide: Preclinical studies[J]. Strahlenther Onkol, 2016,192(8):561-568. doi: 10.1007/s00066-016-0989-5.
doi: 10.1007/s00066-016-0989-5 pmid: 27282278
[25] Stringer AM, Logan RM. The role of oral flora in the development of chemotherapy-induced oral mucositis[J]. J Oral Pathol Med, 2015,44(2):81-87. doi: 10.1111/jop.12152.
doi: 10.1111/jop.12152 pmid: 24494824
Stringer AM, Logan RM. The role of oral flora in the development of chemotherapy-induced oral mucositis[J]. J Oral Pathol Med, 2015,44(2):81-87. doi: 10.1111/jop.12152.
doi: 10.1111/jop.12152 pmid: 24494824
[26] Spanou E, Kalisperati P, Pateras IS, et al. Genetic variability as a regulator of TLR4 and NOD signaling in response to bacterial driven DNA Damage Response (DDR) and inflammation: focus on the Gastrointestinal (GI) tract[J]. Front Genet, 2017,8:65. doi: 10.3389/fgene.2017.00065.
doi: 10.3389/fgene.2017.00065 pmid: 28611823
Spanou E, Kalisperati P, Pateras IS, et al. Genetic variability as a regulator of TLR4 and NOD signaling in response to bacterial driven DNA Damage Response (DDR) and inflammation: focus on the Gastrointestinal (GI) tract[J]. Front Genet, 2017,8:65. doi: 10.3389/fgene.2017.00065.
doi: 10.3389/fgene.2017.00065 pmid: 28611823
[27] Fakiha K, Coller JK, Logan RM, et al. Amitriptyline prevents CPT-11-induced early-onset diarrhea and colonic apoptosis without reducing overall gastrointestinal damage in a rat model of mucositis[J]. Support Care Cancer, 2019,27(6):2313-2320. doi: 10.1007/s00520-018-4511-8.
doi: 10.1007/s00520-018-4511-8 pmid: 30350190
Fakiha K, Coller JK, Logan RM, et al. Amitriptyline prevents CPT-11-induced early-onset diarrhea and colonic apoptosis without reducing overall gastrointestinal damage in a rat model of mucositis[J]. Support Care Cancer, 2019,27(6):2313-2320. doi: 10.1007/s00520-018-4511-8.
doi: 10.1007/s00520-018-4511-8 pmid: 30350190
[28] Zhang Y, Zhang B, Dong L, et al. Potential of Omega-3 polyunsaturated fatty acids in managing chemotherapy- or radiotherapy-related intestinal microbial dysbiosis[J]. Adv Nutr, 2019,10(1):133-147. doi: 10.1093/advances/nmy076.
doi: 10.1093/advances/nmy076 pmid: 30566596
Zhang Y, Zhang B, Dong L, et al. Potential of Omega-3 polyunsaturated fatty acids in managing chemotherapy- or radiotherapy-related intestinal microbial dysbiosis[J]. Adv Nutr, 2019,10(1):133-147. doi: 10.1093/advances/nmy076.
doi: 10.1093/advances/nmy076 pmid: 30566596
[29] Sukhotnik I, Rioburt A, Pollak Y, et al. Wnt/beta-catenin signaling cascade down-regulation following massive small bowel resection in a rat[J]. Pediatr Surg Int, 2014,30(2):173-180. doi: 10.1007/s00383-013-3447-9.
doi: 10.1007/s00383-013-3447-9
Sukhotnik I, Rioburt A, Pollak Y, et al. Wnt/beta-catenin signaling cascade down-regulation following massive small bowel resection in a rat[J]. Pediatr Surg Int, 2014,30(2):173-180. doi: 10.1007/s00383-013-3447-9.
doi: 10.1007/s00383-013-3447-9
[30] Natarajan K, Abrahan P, Kota R, et al. NF-kappaB-iNOS-COX2-TNF alpha inflammatory signaling pathway plays an important role in methotrexate induced small intestinal injury in rats[J]. Food Chem Toxicol, 2018,118:766-783. doi: 10.1016/j.fct.2018.06.040.
doi: 10.1016/j.fct.2018.06.040 pmid: 29935243
Natarajan K, Abrahan P, Kota R, et al. NF-kappaB-iNOS-COX2-TNF alpha inflammatory signaling pathway plays an important role in methotrexate induced small intestinal injury in rats[J]. Food Chem Toxicol, 2018,118:766-783. doi: 10.1016/j.fct.2018.06.040.
doi: 10.1016/j.fct.2018.06.040 pmid: 29935243
[31] Khan S, Wardill HR, Bowen JM. Role of toll-like receptor 4 (TLR4)-mediated interleukin-6 (IL-6) production in chemotherapy-induced mucositis[J]. Cancer Chemother Pharmacol, 2018,82(1):31-37. doi: 10.1007/s00280-018-3605-9.
doi: 10.1007/s00280-018-3605-9 pmid: 29845394
Khan S, Wardill HR, Bowen JM. Role of toll-like receptor 4 (TLR4)-mediated interleukin-6 (IL-6) production in chemotherapy-induced mucositis[J]. Cancer Chemother Pharmacol, 2018,82(1):31-37. doi: 10.1007/s00280-018-3605-9.
doi: 10.1007/s00280-018-3605-9 pmid: 29845394
[32] Wardill HR, Gibson RJ, Logan RM, et al. TLR4/PKC-mediated tight junction modulation: a clinical marker of chemotherapy-induced gut toxicity?[J]. Int J Cancer, 2014,135(11):2483-2492. doi: 10.1002/ijc.28656.
doi: 10.1002/ijc.28656 pmid: 24310924
Wardill HR, Gibson RJ, Logan RM, et al. TLR4/PKC-mediated tight junction modulation: a clinical marker of chemotherapy-induced gut toxicity?[J]. Int J Cancer, 2014,135(11):2483-2492. doi: 10.1002/ijc.28656.
doi: 10.1002/ijc.28656 pmid: 24310924
[33] Justino PFC, Franco AX, Pontier-Bres R, et al. Modulation of 5-fluorouracil activation of toll-like/MyD88/NF-kappaB/MAPK pathway by Saccharomyces boulardii CNCM I-745 probiotic[J]. Cytokine, 2020,125:154791. doi: 10.1016/j.cyto.2019.154791.
doi: 10.1016/j.cyto.2019.154791 pmid: 31401369
Justino PFC, Franco AX, Pontier-Bres R, et al. Modulation of 5-fluorouracil activation of toll-like/MyD88/NF-kappaB/MAPK pathway by Saccharomyces boulardii CNCM I-745 probiotic[J]. Cytokine, 2020,125:154791. doi: 10.1016/j.cyto.2019.154791.
doi: 10.1016/j.cyto.2019.154791 pmid: 31401369
[34] Karasneh J, Bani-Hani M, Alkhateeb A, et al. TLR2, TLR4 and CD86 gene polymorphisms in recurrent aphthous stomatitis[J]. J Oral Pathol Med, 2015,44(10):857-863. doi: 10.1111/jop.12298.
doi: 10.1111/jop.12298 pmid: 25482673
Karasneh J, Bani-Hani M, Alkhateeb A, et al. TLR2, TLR4 and CD86 gene polymorphisms in recurrent aphthous stomatitis[J]. J Oral Pathol Med, 2015,44(10):857-863. doi: 10.1111/jop.12298.
doi: 10.1111/jop.12298 pmid: 25482673
[35] Burdelya LG, Gleiberman AS, Toshkov I, et al. Toll-like receptor 5 agonist protects mice from dermatitis and oral mucositis caused by local radiation: implications for head-and-neck cancer radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2012,83(1):228-234. doi: 10.1016/j.ijrobp.2011.05.055.
doi: 10.1016/j.ijrobp.2011.05.055 pmid: 22000579
Burdelya LG, Gleiberman AS, Toshkov I, et al. Toll-like receptor 5 agonist protects mice from dermatitis and oral mucositis caused by local radiation: implications for head-and-neck cancer radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2012,83(1):228-234. doi: 10.1016/j.ijrobp.2011.05.055.
doi: 10.1016/j.ijrobp.2011.05.055 pmid: 22000579
[36] Li W, Ge C, Yang L, et al. CBLB502, an agonist of Toll-like receptor 5, has antioxidant and scavenging free radicals activities in vitro[J]. Int J Biol Macromol, 2016,82:97-103. doi: 10.1016/j.ijbiomac.2015.10.033.
doi: 10.1016/j.ijbiomac.2015.10.033 pmid: 26476243
Li W, Ge C, Yang L, et al. CBLB502, an agonist of Toll-like receptor 5, has antioxidant and scavenging free radicals activities in vitro[J]. Int J Biol Macromol, 2016,82:97-103. doi: 10.1016/j.ijbiomac.2015.10.033.
doi: 10.1016/j.ijbiomac.2015.10.033 pmid: 26476243
[37] Burdelya LG, Krivokrysenko VI, Tallant TC, et al. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models[J]. Science, 2008,320(5873):226-230. doi: 10.1126/science.1154986.
doi: 10.1126/science.1154986 pmid: 18403709
Burdelya LG, Krivokrysenko VI, Tallant TC, et al. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models[J]. Science, 2008,320(5873):226-230. doi: 10.1126/science.1154986.
doi: 10.1126/science.1154986 pmid: 18403709
[38] Varga MG, Piazuelo MB, Romero-Gallo J, et al. TLR9 activation suppresses inflammation in response to Helicobacter pylori infection[J]. Am J Physiol Gastrointest Liver Physiol, 2016,311(5):G852-G858. doi: 10.1152/ajpgi.00175.2016.
doi: 10.1152/ajpgi.00175.2016 pmid: 27758771
Varga MG, Piazuelo MB, Romero-Gallo J, et al. TLR9 activation suppresses inflammation in response to Helicobacter pylori infection[J]. Am J Physiol Gastrointest Liver Physiol, 2016,311(5):G852-G858. doi: 10.1152/ajpgi.00175.2016.
doi: 10.1152/ajpgi.00175.2016 pmid: 27758771
[39] Dragasevic S, Stankovic B, Sokic-Milutinovic A, et al. Importance of TLR9-IL23-IL17 axis in inflammatory bowel disease development: gene expression profiling study[J]. Clin Immunol, 2018,197:86-95. doi: 10.1016/j.clim.2018.09.001.
doi: 10.1016/j.clim.2018.09.001 pmid: 30193869
Dragasevic S, Stankovic B, Sokic-Milutinovic A, et al. Importance of TLR9-IL23-IL17 axis in inflammatory bowel disease development: gene expression profiling study[J]. Clin Immunol, 2018,197:86-95. doi: 10.1016/j.clim.2018.09.001.
doi: 10.1016/j.clim.2018.09.001 pmid: 30193869
[40] Kaczmarek A, Brinkman BM, Heyndrickx L, et al. Severity of doxorubicin-induced small intestinal mucositis is regulated by the TLR-2 and TLR-9 pathways[J]. J Pathol, 2012,226(4):598-608. doi: 10.1002/path.3009.
doi: 10.1002/path.3009 pmid: 21960132
Kaczmarek A, Brinkman BM, Heyndrickx L, et al. Severity of doxorubicin-induced small intestinal mucositis is regulated by the TLR-2 and TLR-9 pathways[J]. J Pathol, 2012,226(4):598-608. doi: 10.1002/path.3009.
doi: 10.1002/path.3009 pmid: 21960132
[1] ZHANG Lin,TANG Yawen,WANG Jiantao,WANG Yan. Research progress on probiotics for the prevention and treatment of oral and gastrointestinal chemoradiotherapy mucositis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(8): 567-571.
[2] TANG Yawen,ZHANG Lin,YANG Xue,ZOU Jing,WANG Yan. Oral health management in children with acute lymphoblastic leukemia [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(8): 572-576.
[3] ZHANG Shuguang,YIN Xiteng,XU Wenguang,HAN Wei,LIU Zhe. Clinical analysis of 22 cases of lymphoepithelial carcinoma of parotid gland [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(6): 400-405.
[4] LING Yunxiao,WANG Jiantao,WANG Yan. Research progress on biomarkers related to radiotherapy and/or chemotherapy-induced oral mucositis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(4): 260-266.
[5] SUN Zhongyi,CHEN Yiming,WANG Yi,JI Tong. 55 cases of perioperative mortality in oral maxillofacial head and neck cancer patients: a retrospective analysis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(9): 575-580.
[6] LIU Enyan,HE Bing,LI Mingyun. Research progress on epigallocatechin-3-gallate in the prevention and treatment of oral cancer [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(7): 468-471.
[7] ZOU Xiaolong,CHEN Yuan,WANG Yan,WANG Jiantao. Research progress on animal models of oral mucositis caused by radiotherapy and chemotherapy [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(5): 322-326.
[8] LI Xiaodong,MENG Jian. Application progress of recombinant human endostatin in the treatment of head and neck cancer [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(4): 267-272.
[9] DING Feng,SHI Shaojie,SONG Yingliang. Research progress of superhydrophilic implants [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(4): 252-256.
[10] JI Tong. Diagnosis and treatment of head and neck osteosarcoma [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(9): 545-550.
[11] Xinyuan LEI,Xinyu LIN,Zhanpeng OU,Yi RUAN,Jinsong LI. Mitochondrial fission protein 1 determines mitochondrial fission and cisplatin sensitivity in tongue squamous cell carcinoma [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(6): 350-354.
[12] HE Yue,LI Xiaoguang. Prevention and treatment of osteoradionecrosis of the jaws [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(3): 143-152.
[13] WANG Cuiping,WANG Mengxi,LV Bo. Depression status of 136 patients with adjuvant radiotherapy after reconstruction of the oral cancer flap and analysis of influencing factors [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(11): 723-728.
[14] Chaobin PAN. Research progress in comprehensive and sequential treatment of tongue squamous cell carcinoma [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(5): 273-280.
[15] Yu LU, Chengxia LIU, Zhongjun LIU. Role of TRAF6 in inflammatory responses of human osteoblast-like cells with Enterococcusfaecalis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(7): 420-425.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHU Song-song, HU Jing. The application of distraction osteogenesis in the temporomandibular joint ankylosis and secondary dentofacial deformities[J]. journal1, 2016, 24(1): 6 -10 .
[2] XU Jing. The influence of the impacted mandibular third molar extraction on the distal periodontal tissue of the mandibular second molar[J]. journal1, 2016, 24(1): 11 -14 .
[3] ZHONG Jiang-long, PAN Ji-yang, CHEN Wei-liang. The evaluation of Eagle syndrome treatment by surgery combined with antidepressant therapy[J]. journal1, 2016, 24(1): 26 -28 .
[4] CHEN Xi, SUN Qin-zhou. The study of colorimetric board of porcelain fused to metal restoration for moderate to severe dental fluorosis[J]. journal1, 2016, 24(1): 33 -36 .
[5] OUYANG Ke-xiong1, LIANG Jun, ZOU Rui, LI Zhi-qiang, BAI Zhi-bao, PIAO Zheng-guo, ZHAO Jian-Jiang.. Ion Torrent RNA-Seq detection and analysis of the long non-coding RNA in tongue squamous cell carcinoma[J]. journal1, 2016, 24(1): 15 -19 .
[6] YU Pei, XUE Jing, ZHANG Xiao-wei, ZHENG Cang-shang. The influence of the roughness of zirconia ceramic surface on microbial attachment[J]. journal1, 2016, 24(1): 20 -25 .
[7] LIU Fang. Clinical assessment of two fissure sealant techniques in children’s dental caries prevention[J]. journal1, 2016, 24(1): 44 -45 .
[8] . [J]. journal1, 2016, 24(1): 49 -52 .
[9] LU Jian-rong, BAN Hua-jie, WANG Dai-you, ZHOU Hui-hui, LONG Ru, QIN Shu-hua. Clinical observation of sternocleidomastoid muscle flaps combined with artificial biological membrane reparing the defects after parotidectomy[J]. journal1, 2016, 24(1): 29 -32 .
[10] LI Bin, HE Xiao-ning, GAO Yuan, HU Yu-ping. Clinical analysis of pain after two kinds of apical stop preparation[J]. journal1, 2016, 24(1): 40 -43 .
This work is licensed under a Creative Commons Attribution 3.0 License.