Journal of Prevention and Treatment for Stomatological Diseases ›› 2021, Vol. 29 ›› Issue (11): 746-751.doi: 10.12016/j.issn.2096-1456.2021.11.004

• Basic Study • Previous Articles     Next Articles

The level of antimicrobial peptides in gingival crevicular fluid and its correlation with periodontal clinical indexes in elderly patients with type 2 diabetic periodontitis

ZHANG Yameng1(),ZHANG Huiyuan1,RUAN Shihong2,CHEN Xiaochun2,GAN Xueqi1,YU Haiyang1()   

  1. 1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
    2. Shenzhen Center for Chronic Disease Control, Shenzhen 518000, China
  • Received:2021-03-12 Revised:2021-05-07 Online:2021-11-20 Published:2021-07-20
  • Contact: Haiyang YU E-mail:1287660531@qq.com;yhyang6812@scu.edu.cn
  • Supported by:
    13th Five Year Plan for National Key R&D Program of China(2016YFC1102704)

Abstract:

Objective To investigate the changes and significance of human beta-defensin-2 (HBD-2) and LL-37 in the gingival crevicular fluid of patients with periodontitis and type 2 diabetes mellitus (T2DM). Methods This study was conducted among 45- to 85-year-old patients in the Department of Stomatology and Internal Medicine of Shenzhen Center for Chronic Disease Control, including a healthy control group of 22 people, a systemically healthy control group of 19 people with periodontitis, a T2DM periodontal health group of 15 people, and a T2DM group of 21 people with periodontitis. The Florida periodontal probe was used for periodontal examination, and the clinical indexes, including probing depth (PD), clinical attachment level (CAL) and probing on bleeding (BOP), were recorded. The concentrations of HBD-2 and Ll-37 in gingival crevicular fluid were determined by ELISA. The differences in HBD-2, LL-37 and periodontal clinical indexes between the groups were compared, and correlation analysis was conducted.Results The PD values in T2DM with the periodontitis group were higher than those of the systemically healthy controls with periodontitis group (P < 0.05); the levels of HBD-2 and LL-37 in gingival crevicular fluid in systemically healthy controls with periodontitis group were significantly higher than those in the healthy control group (P < 0.05), the level of HBD-2 in gingival crevicular fluid in systemically healthy controls with periodontitis group was significantly higher than that in T2DM with periodontitis group (P < 0.05); and the antimicrobial peptides HBD-2 and LL-37 in gingival crevicular fluid were significantly positively correlated with the PD and CAL in systemically healthy controls with periodontitis group (P < 0.05), and there was no significant correlation between the antimicrobial peptides HBD-2, LL-37 in gingival crevicular fluid and PD, CAL in T2DM with periodontitis group (P > 0.05). Conclusion The levels of antimicrobial peptides HBD-2 and LL-37 in gingival crevicular fluid of middle-aged and elderly patients with T2DM periodontitis were lower, and there was no significant correlation with PD and CAL in periodontal clinical indicators.

Key words: middle-aged and elderly, type 2 diabetes mellitus, periodontitis, gingival crevicular fluid, antimicrobial peptides, LL-37, human beta defensins-2, probing depth, attachment level, probing bleeding

CLC Number: 

  • R78

Table 1

Comparison of the periodontal clinical indexes between the healthy group and T2DM group Median(IQR)"

Groups PD (mm) P CAL (mm) P BOP % P
Healthy control group 1.63(1.49,1.75) 0.191 1.48(1.30,1.53) 0.636 8.00(3.50,14.25) 0.963
T2DM with periodontal health group 1.69(1.57,1.83) 1.42(1.24,1.72) 9.00(4.00,11.00)
Systemically healthy controls with periodontitis group 2.35(2.06,2.71) 0.044 3.25(2.86,3.63) 0.567 18.00(14.00,34.00) 0.409
T2DM with periodontitis group 2.65(2.38,3.01) 3.23(2.76,3.93) 14.00(6.50,25.00)

Table 2

Antimicrobial peptide levels in gingival crevicular fluid of each group Median(IQR)"

Groups HBD-2 (pg/mL) LL-37 (pg/mL)
Healthy control group 42.72(28.29,70.73) 11.06(5.16,30.41)
Systemically healthy controls with periodontitis group 83.07(66.65,148.82)1) 19.93(6.49,60.07)1)
T2DM with periodontal health group 34.80(23.43,54.31)1)2) 9.06(3.17,32.88)2)
T2DM with periodontitis group 42.02(23.32,106.40)2) 13.78(4.84,58.94)
H 10.451 7.727
P 0.015 0.041

Table 3

Correlation between the antimicrobial peptide levels in the gingival crevicular fluid and the periodontal clinical indicators in systemically healthy controls in the periodontitis group"

PD CAL BOP%
r P r P r P
HBD-2 0.466 <0.001 0.338 0.012 0.239 0.081
LL-37 0.234 0.043 0.279 0.039 -0.140 0.534

Table 4

Correlation between the antimicrobial peptide levels in gingival crevicular fluid and the periodontal clinical indicators in elderly patients with T2DM periodontitis"

PD CAL BOP%
r P r P r P
HBD-2 -0.251 0.079 -0.174 0.226 -0.119 0.410
LL-37 -0.116 0.448 -0.193 0.205 -0.019 0.899
[1] Gupta S, Bhatia G, Sharma A, et al. Host defense peptides: an insight into the antimicrobial world[J]. J Oral Maxillofac Pathol, 2018, 22(2):239-244. doi: 10.4103/jomfp.JOMFP_113_16.
doi: 10.4103/jomfp.JOMFP_113_16
[2] 姚佳, 黄宇欣, 高豪, 等. 抗菌肽LL-37在几种常见口腔疾病中的作用[J]. 医学综述, 2020, 26(18):3701-3706. doi: 10.3969/j.issn.1006-2084.2020.18.030.
Yao J, Huang YX, Gao H, et al. Role of antimicrobial peptide LL-37 in several common oral diseases[J]. Medical Recapitulate, 2020, 26(18):3701-3706. doi: 10.3969/j.issn.1006-2084.2020.18.030.
[3] 丁一, 王琪. 伴糖尿病牙周炎的治疗进展[J]. 口腔疾病防治, 2018, 26(9):545-550. doi: 10.12016/j.issn.2096-1456.2018.09.001.
Ding Y, Wang Q. Therapeutic progress of diabetic periodontitis[J]. J Prev Treat Stomatol Dis, 2018, 26(9):545-550. doi: 10.12016/j.issn.2096-1456.2018.09.001.
[4] Jaradat SW, Cubillos S, Krieg N, et al. Low DEFB4 copy number and high systemic hBD-2 and IL-22 levels are associated with dermatophytosis[J]. J Invest Dermatol, 2015, 135(3):750-758. doi: 10.1038/jid.2014.369.
doi: 10.1038/jid.2014.369
[5] Jourdain ML, Velard F, Pierrard L, et al. Cationic antimicrobial peptides and periodontal physiopathology: a systematic review[J]. J Periodontal Res, 2019, 54(6):589-600. doi: 10.1111/jre.12676.
doi: 10.1111/jre.v54.6
[6] Li S, Schmalz G, Schmidt J, et al. Antimicrobial peptides as a possible interlink between periodontal diseases and its risk factors: a systematic review[J]. J Periodontal Res, 2018, 53(2):145-155. doi: 10.1111/jre.12482.
doi: 10.1111/jre.12482 pmid: 28990193
[7] Lan CCE, Wu CS, Huang SM, et al. High-Glucose environment inhibits p38MAPK signaling and reduces human β-3 expression in keratinocytes[J]. Molecular Medicine, 2011, 17(7):771-779. doi: 10.2119/molmed.2010.00091.
doi: 10.2119/molmed.2010.00091
[8] Arampatzioglou A, Papazoglou D, Konstantinidis T, et al. Clarithromycin enhances the antibacterial activity and wound healing capacity in type 2 diabetes mellitus by increasing LL-37 load on neutrophil extracellular traps[J]. Front Immunol, 2018, 9:2064. doi: 10.3389/fimmu.2018.02064.
doi: 10.3389/fimmu.2018.02064 pmid: 30250474
[9] Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: framework and proposal of a new classification and case definition[J]. J Clin Periodontol, 2018, 89 Suppl 1: S159-S172. doi: 10.1002/JPER.18-0006.
[10] Niu JY, Yin IX, Mei ML, et al. The multifaceted roles of antimicrobial peptides in oral diseases[J]. Mol Oral Microbiol, 2021, 36(3):159-171. doi: 10.1111/omi.12333.
doi: 10.1111/omi.v36.3
[11] Fatima T, Khurshid Z, Rehman A, et al. Gingival crevicular fluid (GCF): a diagnostic Tool for the detection of periodontal health and diseases[J]. Molecules, 2021, 26(5):1208. doi: 10.3390/molecules26051208.
doi: 10.3390/molecules26051208
[12] Sidharthan S, Dharmarajan G, Kulloli A. Gingival crevicular fluid levels of Interleukin-22 (IL-22) and human β Defensin-2 (hBD-2) in periodontal health and disease: a correlative study[J]. J Oral Biol Craniofac Res, 2020, 10(4):498-503. doi: 10.1016/j.jobcr.2020.07.021.
doi: 10.1016/j.jobcr.2020.07.021
[13] Öztürk A, Kurt-Bayrakdar S, Avci B. Comparison of gingival crevicular fluid and serum human beta-defensin-2 levels between periodontal health and disease[J]. Oral Dis, 2021, 27(4):993-1000. doi: 10.1111/odi.13597.
doi: 10.1111/odi.v27.4
[14] Soldati KR, Toledo FA, Aquino SG, et al. Smoking reduces cathelicidin LL-37 and human neutrophil peptide 1-3 levels in the gingival crevicular fluid of patients with periodontitis[J]. J Periodontol, 2021, 92(4):562-570. doi: 10.1002/JPER.20-0098.
doi: 10.1002/jper.v92.4
[15] Yilmaz D, Topcu AO, Akcay EU, et al. Salivary human beta-defensins and cathelicidin levels in relation to periodontitis and type 2 diabetes mellitus[J]. Acta Odontol Scand, 2020, 78(5):327-331. doi: 10.1080/00016357.2020.1715471.
doi: 10.1080/00016357.2020.1715471
[16] Yang X, Niu L, Pan Y, et al. LL-37-Induced autophagy contributed to the elimination of live porphyromonas gingivalis internalized in keratinocytes[J]. Front Cell Infect Microbiol, 2020, 10:561761. doi: 10.3389/fcimb.2020.561761.
doi: 10.3389/fcimb.2020.561761
[17] Rizwan H, Pal S, Sabnam S, et al. High glucose augments ROS generation regulates mitochondrial dysfunction and apoptosis via stress signalling cascades in keratinocytes[J]. Life Sci, 2020, 241:117148. doi: 10.1016/j.lfs.2019.117148.
doi: S0024-3205(19)31076-8 pmid: 31830478
[18] Montoya-Rosales A, Castro-Garcia P, Torres-Juarez F, et al. Glucose levels affect LL-37 expression in monocyte-derived macrophages altering the Mycobacterium tuberculosis intracellular growth control[J]. Microb Pathog, 2016, 97:148-153. doi: 10.1016/j.micpath.2016.06.002.
doi: 10.1016/j.micpath.2016.06.002
[19] Yılmaz D, Güncü GN, Könönen E, et al. Overexpressions of hBD-2, hBD-3, and hCAP18/LL-37 in gingiva of diabetics with periodontitis[J]. Immunobiology, 2015, 220(11):1219-1226. doi: 10.1016/j.imbio.2015.06.013.
doi: 10.1016/j.imbio.2015.06.013
[20] Radhakrishnan P, Anbalagan R, Barani R, et al. Sequencing of porphyromonas gingivalis from saliva in patients with periodontitis and type 2 diabetes mellitus[J]. Indian J Med Microbiol, 2019, 37(1):54-59. doi: 10.4103/ijmm.IJMM_18_409.
doi: 10.4103/ijmm.IJMM_18_409 pmid: 31424011
[21] Ramamoorthy A, Mahendra J, Mahendra L, et al. Effect of sudharshan kriya pranayama on salivary expression of human beta defensin-2, peroxisome proliferator-activated receptor gamma, and nuclear factor-kappa B in chronic periodontitis[J]. Cureus, 2020, 12(2):e6905. doi: 10.7759/cureus.6905.
[22] Warnke PH, Voss E, Russo PA, et al. Antimicrobial peptide coating of dental implants: biocompatibility assessment of recombinant human beta defensin-2 for human cells[J]. Int J Oral Maxillofac Implants, 2013, 28(4):982-988. doi: 10.11607/jomi.2594.
doi: 10.11607/jomi.2594
[23] Peng Y, Li L, Yuan Q, et al. Effect of bifunctional β defensin 2-Modified scaffold on bone defect reconstruction[J]. ACS Omega, 2020, 5(8):4302-4312. doi: 10.1021/acsomega.9b04249.
doi: 10.1021/acsomega.9b04249
[24] Mccrudden MCC, O’donnell K, Irwin CR, et al. Effects of LL-37 on gingival fibroblasts:a role in periodontal tissue remodeling?[J]. Vaccines (Basel), 2018, 6(3):44. doi: 10.3390/vaccines6030044.
[25] Yu X, Quan J, Long W, et al. LL-37 inhibits LPS-induced inflammation and stimulates the osteogenic differentiation of BMSCs via P2X7 receptor and MAPK signaling pathway[J]. Exp Cell Res, 2018, 372(2):178-187. doi: 10.1016/j.yexcr.2018.09.024.
doi: 10.1016/j.yexcr.2018.09.024
[26] Batoni G, Maisetta G, Esin S. Therapeutic potential of antimicrobial peptides in polymicrobial biofilm-associated infections[J]. Int J Mol Sci, 2021, 22(2):482. doi: 10.3390/ijms22020482.
doi: 10.3390/ijms22020482
[27] Tang E, Khan I, Andreana S, et al. Laser-activated transforming growth factor-β1 induces human β-defensin 2: implications for laser therapies for periodontitis and peri-implantitis[J]. J Periodontal Res, 2017, 52(3):360-367. doi: 10.1111/jre.12399.
doi: 10.1111/jre.12399 pmid: 27396269
[1] SONG Bingqing,REN Biao,CHENG Lei. Research progress on the relationship between Fusobacterium nucleatum and periodontitis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(8): 557-561.
[2] YIN Xin,REN Xiu-yun. Research progress on the application of photodynamic therapy in periodontal treatment [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(8): 562-566.
[3] SHAN Chao,WANG Tingting,ZHAO Jin. Research progress on the correlation between interleukin-18 and chronic periodontitis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(7): 485-489.
[4] WANG Yanfeng,ZENG Jiajun,YUAN Qiao,LUAN Qingxian. Influence of mechanical debridement on the subgingival microbiome in chronic periodontitis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(6): 368-376.
[5] GU Wenjia,LU Haixia,ZHANG Yu,FENG Xiping. Research progress on the study of the relationship between periodontitis and cancers of the digestive system [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(5): 346-350.
[6] YANG Wanjuan,XU Jie. High-throughput sequencing analysis of the microbiota of subgingival plaque in patients with periodontitis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(3): 157-165.
[7] XIA Jiaojiao,LI Houxuan. Clinical efficacy evaluation of minimally invasive periodontal therapy assisted by endoscopy [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(3): 171-177.
[8] YANG Ting,HUANG Shiguang. The interaction between Cyclophilin A and CD147 and its clinical significance in periodontal diseases [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(3): 189-193.
[9] LUO Yongxi,HUANG Xueying,XIAN Ruoting,YU Wanxin,LIANG Lixin,LIANG Zhaojia,CHEN Ziyun,HOU Dan,YU Ting. Micro-CT analysis of hyperuricemia on alveolar bone destruction caused by short-term periodontal infection in mice [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(2): 88-93.
[10] SHI Shaojie,LIU Xiangdong,SONG Yingliang. The effect of hypoglycemic drugs on bone metabolism and dental implantation in type 2 diabetes mellitus patients [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(2): 110-114.
[11] ZHANG Qian,CHEN Bin,YAN Fuhua. Changes and clinical significance of four biomarkers in gingival crevicular fluid after nonsurgical periodontal therapy [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(12): 828-835.
[12] ZHENG Xu,XIE Chen,GAO Chang,GUO Zhuling. Research progress on the relationship between IL-37 and periodontitis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(12): 859-864.
[13] XU Tengfei,CHEN Bin,AO Huizhi,SUN Weibin,WU WenLei. Effect of the antimicrobial photodynamic therapy in the treatment of periodontitis in type 2 diabetes mellitus: a systematic review and meta-analysis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(11): 752-760.
[14] HUANG Xiangya,CAI Yanling,WEI Xi. Full-cycle management of endodontic microsurgery [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(10): 649-655.
[15] ZHAO Junjie,TAN Baochun,LI Lili,ZHANG Yangheng,CHEN Sheng. Effects of ultrasonic subgingival scaling and root planing with a periodontal endoscope on the root surface [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(10): 684-688.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. journal1, 2016, 24(1): 58 -60 .
[2] Juan LI,Ting HUANG,Wen XUE,Hai-yan LI. Clinical efficacy of basic periodontal therapy combined with local medication for erosive oral lichen planus[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(3): 162 -165 .
[3] Ming CHEN,Xi CHEN,Zhen-ting ZHANG. The precision comparison of the denture occlusal plane preparation by the occlusal plane plate between experienced and newly-graduated dentists[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(3): 173 -176 .
[4] Zhong-juan TAN,Yue-ping ZHAO,Yuan-yuan LUO. The research progress of dental pulp regeneration[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(6): 374 -377 .
[5] Lan LIAO, Lijun ZENG. Updated research on digitalization in aesthetic restoration[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(7): 409 -414 .
[6] Yan-mei DONG. Causes and management of post-treatment apical periodontitis[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(10): 561 -566 .
[7] LI Chun,LI Yan-hong,LIU Juan. Application of probiotics for dental caries prevention in children[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(9): 558 -560 .
[8] Mingyu SUN, Hanjiang WU. Research progresses in occult lymph node metastasis of oral squamous cancer[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(1): 61 -65 .
[9] Qian-qian HAN,Zhao LIU,Li JIANG,Hui-yi TANG,Xiao-na LI. Effects of LMK-235 on osteoblast/odontoblast differentiation in hPDLCs[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(7): 390 -394 .
[10] Nu MI,Ying GUO,Xiao-yu YANG. Clinical evaluation of anterior teeth aesthetic restoration with thin porcelain laminate veneer[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(10): 589 -593 .
This work is licensed under a Creative Commons Attribution 3.0 License.