口腔疾病防治 ›› 2021, Vol. 29 ›› Issue (8): 505-514.DOI: 10.12016/j.issn.2096-1456.2021.08.001
收稿日期:
2020-10-16
修回日期:
2021-01-19
出版日期:
2021-08-20
发布日期:
2021-05-13
通讯作者:
陈泽涛
作者简介:
陈泽涛,研究员,博士研究生导师,就职于中山大学光华口腔医学院·附属口腔医院。现任中山大学科学研究院基地处副处长,广东省牙颌系统修复重建技术与材料工程技术研究中心副主任。担任中华口腔医学会口腔生物医学专业委员会常务委员,广东省口腔医学会口腔种植专业委员会委员,中国生物材料学会青年委员会委员;入选国家海外高层次人才计划。从事口腔种植学、口腔材料学相关医教研工作,聚焦口腔软硬组织再生修复的免疫机制及其调控研究,成果发表于Advanced Functional Materials,ACS Nano,Materials Today,Biomaterials等期刊;共发表SCI学术论文37篇,以第一作者、通信作者发表影响因子大于10的SCI学术论文7篇;主编《口腔基础研究导论》(人民卫生出版社),参编英语专著《The Immune Response toImplanted Materials and Devices》;主持国家自然科学基金项目(面上、青年)、广东省杰出青年科学基金项目、ITI Research Grant、The Osteology Research Grant等国内国际项目12项。
基金资助:
CHEN Zetao1(),LIN Yixiong1,YANG Jieting2,HUANG Baoxin2,CHEN Zhuofan3
Received:
2020-10-16
Revised:
2021-01-19
Online:
2021-08-20
Published:
2021-05-13
Contact:
Zetao CHEN
Supported by:
摘要:
引导骨再生技术应用于牙槽骨缺损再生的基础是屏障膜的屏障功能及空间维持作用,因此传统屏障膜的研发策略集中关注其物理屏障功能、降解性能及如何规避免疫原性提高生物相容性。屏障膜不仅能够被动地阻挡结缔组织,其作为“异己”成分植入体内后,会引发宿主持续的免疫反应即异物反应。骨免疫学理论表明免疫系统和骨骼系统联系密切,免疫细胞在骨组织相关的病理生理过程中发挥了重要作用。基于这一研究背景,笔者课题组提出基于“免疫微环境调控”的屏障膜研发理念:通过对屏障膜机械性能、表面性能及理化性能的调控,赋予屏障膜良好的免疫调控能力,诱导良好的局部免疫微环境产生,从而协调成骨与破骨以及屏障膜降解过程,提高引导骨再生中屏障膜成骨效能,满足骨缺损再生修复需求。本文述评了屏障膜的发展沿革及免疫微环境、骨再生、屏障膜三者间的紧密联系,提出基于“免疫微环境调控”的屏障膜研发理念,旨在提高屏障膜的成骨效能,解决牙槽骨缺损再生修复的科学难题。
中图分类号:
陈泽涛,林义雄,杨杰婷,黄宝鑫,陈卓凡. 基于“免疫微环境调控”的屏障膜研发理念[J]. 口腔疾病防治, 2021, 29(8): 505-514.
CHEN Zetao,LIN Yixiong,YANG Jieting,HUANG Baoxin,CHEN Zhuofan. Research and development concept of barrier membranes based on “ immune microenvironment regulation”[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(8): 505-514.
图1 具有骨免疫调控性能的屏障膜
Figure 1 Barrier membrane based on osteoimmunomodulation Based on an osteoimmunomodulation strategy, the development concept of barrier membranes emphasizes the manipulation of both physiochemical characteristics, including mechanical characteristics, and surface properties. Additionally, it introduces bioactive agents, such as metal ions, cytokines and antibiotics, to regulate the activation state and polarization of macrophages, thereby creating a favorable osteoimmunological microenvironment facilitating the osteogenic differentiation of MSCs and improving the osteogenic efficiency of barrier membranes. BMP-2: bone morphogenetic protein-2; TGF-β: transforming growth factor-β; VEGF: vascular endothelial growth factor; M-CSF: macrophage colony-stimulating factor; RANKL: receptor activator of NF-κB ligand; OPG: osteoprotegerin
图2 具有良好“免疫降解”性能的屏障膜
Figure 2 Barrier membrane based on the “immunodegradation” strategy The development concept of an “immunodegradation” strategy emphasizes the modulation of cell-mediated degradation to regulate the degradation characteristics of barrier membranes. Manipulation of key cells and cytokines participating in membrane degradation could regulate the function of T cells and the phagocytosis of both macrophages and FBGCs, achieving efficient regulation of the degradation characteristics and osteogenic improvements of membranes. CXCL8: CXC chemokine ligand 8; CCL: C-C motif chemokine ligand; IL: interleukin
[1] |
Indurkar MS, Verma R. Evaluation of the prevalence and distribution of bone defects associated with chronic periodontitis using cone-beam computed tomography: a radiographic study[J]. J Interdisciplinary Dentistry, 2016,6(3):104-109. doi: 10.4103/2229-5194.201647.
DOI URL |
[2] |
Petrov SD, Drew HJ, Sun S. Sequencing osteotomes to overcome challenges presented by deficient bone quantity and quality in potential implant sites[J]. Quintessence Int, 2011,42(1):9-18.
PMID |
[3] |
陈泽涛, 王小双, 张琳珺. 基于“骨免疫微环境调控”的骨替代材料研发理念[J]. 口腔疾病防治, 2018,26(11):688-698. doi: 10.12016/j.issn.2096-1456.2018.11.002.
DOI |
Chen ZT, Wang XS, Zhang LJ. The concept of “osteoimmunomodulation” and its application in the development of “osteoimmune-smart” bone substitute materials[J]. J Prev Treat Stomatol Dis, 2018,26(11):688-698. doi: 10.12016/j.issn.2096-1456.2018.11.002.
DOI |
|
[4] |
曹钰彬, 刘畅, 潘韦霖, 等. 引导骨再生屏障膜改良的研究进展[J]. 华西口腔医学杂志, 2019,37(3), 325-329. doi: 10.7518/hxkq.2019.03.019.
DOI |
Cao YB, Liu C, Pan WL, et al. Research progress on the modification of guided bone regeneration membranes[J]. Hua xi kou qiang yi xue za zhi, 2019,37(3), 325-329. doi: 10.7518/hxkq.2019.03.019.
DOI |
|
[5] | Hurley LA, Stinchfield FE, Bassett AL, et al. The role of soft tissues in osteogenesis. An experimental study of canine spine fusions[J]. J Bone Joint Surg Am, 1959, 41-A:1243-1254. |
[6] |
Elnayef B, Monje A, Gargallo-Albiol J, et al. Vertical ridge augmentation in the atrophic mandible: a systematic review and meta-analysis[J]. Int J Oral Maxillofac Implants, 2017,32(2):291-312. doi: 10.11607/jomi.4861.
DOI PMID |
[7] |
Lim G, Lin GH, Monje A, et al. Wound healing complications following guided bone regeneration for ridge augmentation: a systematic review and meta-analysis[J]. Int J Oral Maxillofac Implants, 2018,33(1):41-50. doi: 10.11607/jomi.5581.
DOI |
[8] | Dahlin C, Sennerby L, Lekholm U, et al. Generation of new bone around Titanium implants using a membrane technique: an experimental study in rabbits[J]. Int J Oral Maxillofac Implants, 1989,4(1):19-25. |
[9] |
Nyman S, Gottlow J, Karring T, et al. The regenerative potential of the periodontal ligament. An experimental study in the monkey[J]. J Clin Periodontol, 1982,9(3):257-265. doi: 10.1111/j.1600-051x.1982.tb02065.x.
DOI PMID |
[10] |
Canullo L, Sisti A. Early implant loading after vertical ridge augmentation (VRA) using e-PTFE titanium-reinforced membrane and nano-structured hydroxyapatite: 2-year prospective study[J]. Eur J Oral Implantol, 2010,3(1):59-69.
PMID |
[11] |
Soldatos NK, Stylianou P, Koidou VP, et al. Limitations and options using resorbable versus nonresorbable membranes for successful guided bone regeneration[J]. Quintessence Int, 2017,48(2):131-147. doi: 10.3290/j.qi.a37133.
DOI |
[12] |
Rowe MJ, Kamocki K, Pankajakshan D, et al. Dimensionally stable and bioactive membrane for guided bone regeneration: an in vitro study[J]. J Biomed Mater Res B Appl Biomater, 2016,104(3):594-605. doi: 10.1002/jbm.b.33430.
DOI URL |
[13] |
Jang YS, Moon SH, Nguyen TT, et al. In vivo bone regeneration by differently designed Titanium membrane with or without surface treatment: a study in rat calvarial defects[J]. J Tissue Eng, 2019,10:2041731419831466. doi: 10.1177/2041731419831466.
DOI |
[14] |
Naung NY, Shehata E, Van Sickels JE. Resorbable versus nonresorbable membranes: when and why?[J]. Dent Clin North Am, 2019,63(3):419-431. doi: 10.1016/j.cden.2019.02.008.
DOI URL |
[15] |
Sheikh Z, Qureshi J, Alshahrani AM, et al. Collagen based barrier membranes for periodontal guided bone regeneration applications[J]. Odontology, 2017,105(1):1-12. doi: 10.1007/s10266-016-0267-0.
DOI URL |
[16] |
Miller N, Penaud J, Foliguet B, et al. Resorption rates of 2 commercially available bioresorbable membranes. A histomorphometric study in a rabbit model[J]. J Clin Periodontol, 1996,23(12):1051-1059. doi: 10.1111/j.1600-051x.1996.tb01803.x.
DOI PMID |
[17] |
Wang J, Wang L, Zhou Z, et al. Biodegradable polymer membranes applied in guided bone/tissue regeneration: a review[J]. Polymers (Basel), 2016,8(4):115. doi: 10.3390/polym8040115.
DOI URL |
[18] |
Gentile P, Chiono V, Tonda-Turo C, et al. Polymeric membranes for guided bone regeneration[J]. Biotechnol J, 2011,6(10):1187-1197. doi: 10.1002/biot.201100294.
DOI URL |
[19] |
Zhang HY, Jiang HB, Ryu JH, et al. Comparing properties of variable Pore-Sized 3D-Printed PLA membrane with conventional PLA membrane for guided bone/tissue regeneration[J]. Materials (Basel), 2019,12(10):1718. doi: 10.3390/ma12101718.
DOI URL |
[20] |
Aldemir DB, Dikici S, Reilly GC, et al. A novel bilayer polycaprolactone membrane for guided bone regeneration: combining electrospinning and emulsion templating[J]. Materials (Basel), 2019,12(16):2643. doi: 10.3390/ma12162643.
DOI URL |
[21] |
Sheikh Z, Brooks PJ, Barzilay O, et al. Macrophages, foreign body giant cells and their response to implantable biomaterials[J]. Materials (Basel), 2015,8(9):5671-5701. doi: 10.3390/ma8095269.
DOI URL |
[22] |
Lucke S, Hoene A, Walschus U, et al. Acute and chronic local inflammatory reaction after implantation of different extracellular porcine dermis collagen matrices in rats[J]. Biomed Res Int, 2015: 938059. doi: 10.1155/2015/938059.
DOI |
[23] |
Chu C, Liu L, Rung S, et al. Modulation of foreign body reaction and macrophage phenotypes concerning microenvironment[J]. J Biomed Mater Res A, 2020,108(1):127-135. doi: 10.1002/jbm.a.36798.
DOI URL |
[24] |
Chu CY, Liu L, Wang YF, et al. Macrophage phenotype in the epigallocatechin-3-gallate (EGCG)-modified collagen determines foreign body reaction[J]. J Tissue Eng Regen Med, 2018,12(6):1499-1507. doi: 10.1002/term.2687.
DOI URL |
[25] |
Franz S, Rammelt S, Scharnweber D, et al. Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials[J]. Biomaterials, 2011,32(28):6692-6709. doi: 10.1016/j.biomaterials.2011.05.078.
DOI URL |
[26] |
Hotchkiss KM, Reddy GB, Hyzy SL, et al. Titanium surface characteristics, including topography and wettability, alter macrophage activation[J]. Acta Biomater, 2016,31:425-434. doi: 10.1016/j.actbio.2015.12.003.
DOI PMID |
[27] |
Dobrovolskaia MA, Mcneil SE. Immunological properties of engineered nanomaterials[J]. Nat Nanotechnol, 2007,2(8):469-478. doi: 10.1038/nnano.2007.223.
DOI PMID |
[28] |
Xie Y, Hu C, Feng Y, et al. Osteoimmunomodulatory effects of biomaterial modification strategies on macrophage polarization and bone regeneration[J]. Regen Biomater, 2020,7(3):233-245. doi: 10.1093/rb/rbaa006.
DOI URL |
[29] |
Chu C, Deng J, Xiang L, et al. Evaluation of epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts[J]. Mater Sci Eng C Mater Biol Appl, 2016,67:386-394. doi: 10.1016/j.msec.2016.05.021.
DOI URL |
[30] |
Chu CY, Deng J, Man Y, et al. Evaluation of nanohydroxyapaptite (nano-HA) coated epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes[J]. Mater Sci Eng C Mater Biol Appl, 2017,78:258-264. doi: 10.1016/j.msec.2017.04.069.
DOI URL |
[31] |
Chu CY, Deng J, Sun XC, et al. Collagen membrane and immune response in guided bone regeneration: recent progress and perspectives[J]. Tissue Eng Part B Rev, 2017,23(5):421-435. doi: 10.1089/ten.teb.2016.0463.
DOI URL |
[32] |
Okamoto K, Nakashima T, Shinohara M, et al. Osteoimmunology: the conceptual framework unifying the immune and skeletal systems[J]. Physiol Rev, 2017,97(4):1295-1349. doi: 10.1152/physrev.00036.2016.
DOI URL |
[33] | Yavropoulou MP, Yovos JG. Osteoclastogenesis--current knowledge and future perspectives[J]. J Musculoskelet Neuronal Interact, 2008,8(3):204-216. |
[34] |
Chen Z, Klein T, Murray RZ, et al. Osteoimmunomodulation for the development of advanced bone biomaterials[J]. Materials Today, 2016,19(6) : 304-321. doi: 10.1016/j.mattod.2015.11.004.
DOI URL |
[35] |
Gruber R. Osteoimmunology: inflammatory osteolysis and regeneration of the alveolar bone[J]. J Clin Periodontol, 2019,46(Suppl 21):52-69. doi: 10.1111/jcpe.13056.
DOI URL |
[36] |
Shields LB, Raque GH, Glassman SD, et al. Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion[J]. Spine (Phila Pa 1976), 2006,31(5):542-547. doi: 10.1097/01.brs.0000201424.27509.72.
DOI URL |
[37] |
Zara JN, Siu RK, Zhang X, et al. High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo[J]. Tissue Eng Part A, 2011,17(9/10):1389-1399. doi: 10.1089/ten.TEA.2010.0555.
DOI URL |
[38] |
Liu W, Zhang X. Receptor activator of nuclear factor-κB ligand (RANKL)/RANK/osteoprotegerin system in bone and other tissues (review)[J]. Mol Med Rep, 2015,11(5):3212-3218. doi: 10.3892/mmr.2015.3152.
DOI URL |
[39] |
Theill LE, Boyle WJ, Penninger JM. RANK-L and RANK: T cells, bone loss, and mammalian evolution[J]. Annu Rev Immunol, 2002,20:795-823. doi: 10.1146/annurev.immunol.20.100301.064753.
DOI PMID |
[40] |
Horwood NJ, Kartsogiannis V, Quinn JM, et al. Activated T lymphocytes support osteoclast formation in vitro[J]. Biochem Biophys Res Commun, 1999,265(1):144-150. doi: 10.1006/bbrc.1999.1623.
DOI URL |
[41] |
Takayanagi H, Ogasawara K, Hida S, et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma[J]. Nature, 2000,408(6812):600-605. doi: 10.1038/35046102.
DOI PMID |
[42] |
Könnecke I, Serra A, El Khassawna T, et al. T and B cells participate in bone repair by infiltrating the fracture callus in a two-wave fashion[J]. Bone, 2014,64:155-165. doi: 10.1016/j.bone.2014.03.052.
DOI PMID |
[43] |
Li Y, Toraldo G, Li A, et al. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo[J]. Blood, 2007,109(9):3839-3848. doi: 10.1182/blood-2006-07-037994.
DOI URL |
[44] |
Shapouri-Moghaddam S, Mohammadian , Vazini S, et al. Macrophage plasticity, polarization,and function in health and disease[J]. J Cell Physiol, 2018,233(9):6425-6440. doi: 10.1002/jcp.26429.
DOI |
[45] |
Zheng Z, Chen Y, Hong H, et al. The “yin and yang” of immunomodulatory Magnesium-Enriched graphene oxide nanoscrolls decorated biomimetic scaffolds in promoting bone regeneration[J]. Adv Healthc Mater, 2021,10(2):e2000631. doi: 10.1002/adhm.202000631.
DOI |
[46] |
Schlundt C, El Khassawna T, Serra A, et al. Macrophages in bone fracture healing: Their essential role in endochondral ossification[J]. Bone, 2018,106:78-89. doi: 10.1016/j.bone.2015.10.019.
DOI PMID |
[47] |
Lee J, Byun H, Madhurakkat PS, et al. Current advances in immunomodulatory biomaterials for bone regeneration[J]. Adv Healthc Mater, 2019,8(4):e1801106. doi: 10.1002/adhm.201801106.
DOI |
[48] | Jamalpoor Z, Asgari A, Lashkari MH, et al. Modulation of macrophage polarization for bone tissue engineering applications[J]. Iran J Allergy Asthma Immunol, 2018,17(5):398-408. |
[49] |
Jin SS, He DQ, Luo D, et al. A biomimetic hierarchical nanointerface orchestrates macrophage polarization and mesenchymal stem cell recruitment to promote endogenous bone regeneration[J]. ACS Nano, 2019,13(6):6581-6595. doi: 10.1021/acsnano.9b00489.
DOI URL |
[50] |
Norowski PJ, Fujiwara T, Clem WC, et al. Novel naturally crosslinked electrospun nanofibrous chitosan mats for guided bone regeneration membranes: material characterization and cytocompatibility[J]. J Tissue Eng Regen Med, 2015,9(5):577-583. doi: 10.1002/term.1648.
DOI PMID |
[51] |
Rothamel D, Schwarz F, Sager M, et al. Biodegradation of differently cross-linked collagen membranes: an experimental study in the rat[J]. Clin Oral Implants Res, 2005,16(3):369-378. doi: 10.1111/j.1600-0501.2005.01108.x.
DOI URL |
[52] |
Chen Z, Chen L, Liu R, et al. The osteoimmunomodulatory property of a barrier collagen membrane and its manipulation via coating nanometer-sized bioactive glass to improve guided bone regeneration[J]. Biomater Sci, 2018,6(5):1007-1019. doi: 10.1039/c7bm00869d.
DOI URL |
[53] |
Minardi S, Corradetti B, Taraballi F, et al. IL-4 release from a biomimetic scaffold for the temporally controlled modulation of macrophage response[J]. Ann Biomed Eng, 2016,44(6):2008-2019. doi: 10.1007/s10439-016-1580-z.
DOI PMID |
[54] |
Chu CY, Wang YF, Wang YJ, et al. Evaluation of epigallocatechin-3-gallate (EGCG) modified collagen in guided bone regeneration (GBR) surgery and modulation of macrophage phenotype[J]. Mater Sci Eng C Mater Biol Appl, 2019,99:73-82. doi: 10.1016/j.msec.2019.01.083.
DOI URL |
[55] |
Fenbo M, Xingyu X, Bin T. Strontium chondroitin sulfate/silk fibroin blend membrane containing microporous structure modulates macrophage responses for guided bone regeneration[J]. Carbohydr Polym, 2019,213:266-275. doi: 10.1016/j.carbpol.2019.02.068.
DOI PMID |
[56] |
Wang X, Ao J, Lu H, et al. Osteoimmune modulation and guided osteogenesis promoted by barrier membranes incorporated with S-nitrosoglutathione (GSNO) and mesenchymal stem cell-derived exosomes[J]. Int J Nanomedicine, 2020,15:3483-3496. doi: 10.2147/IJN.S248741.
DOI URL |
[57] |
Mathew A, Vaquette C, Hashimi S, et al. Antimicrobial and immunomodulatory surface-functionalized electrospun membranes for bone regeneration[J]. Adv Healthc Mater, 2017,6(10):201601345. doi: 10.1002/adhm.201601345.
DOI |
[58] |
Fang J, Liu R, Chen S, et al. Tuning the immune reaction to manipulate the cell-mediated degradation of a collagen barrier membrane[J]. Acta Biomater, 2020,109:95-108. doi: 10.1016/j.actbio.2020.03.038.
DOI URL |
[59] |
Tanneberger AM, Al-Maawi S, Herrera-Vizcaíno C, et al. Multinucleated giant cells within the in vivo implantation bed of a collagen-based biomaterial determine its degradation pattern[J]. Clin Oral Investig, 2021,25(3):859-873. doi: 10.1007/s00784-020-03373-7.
DOI URL |
[60] |
Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials[J]. Semin Immunol, 2008,20(2):86-100. doi: 10.1016/j.smim.2007.11.004.
DOI PMID |
[61] |
Goswami R, Arya RK, Biswas D, et al. Transient receptor potential vanilloid 4 is required for foreign body response and giant cell formation[J]. Am J Pathol, 2019,189(8):1505-1512. doi: 10.1016/j.ajpath.2019.04.016.
DOI PMID |
[62] |
Chia-Lai PJ, Orlowska A, Al-Maawi S, et al. Sugar-based collagen membrane cross-linking increases barrier capacity of membranes[J]. Clin Oral Investig, 2018,22(4):1851-1863. doi: 10.1007/s00784-017-2281-1.
DOI PMID |
[63] |
Herrera-Vizcaíno H, Al-Maawi A, Sader , et al. Modification of collagen-based sponges can induce an upshift of the early inflammatory response and a chronic inflammatory reaction led by M1 macrophages: an in vivo study[J]. Clin Oral Investig, 2020,24(10):3485-3500. doi: 10.1007/s00784-020-03219-2.
DOI PMID |
[1] | 左新慧,李君,韩祥祯,刘小元,何惠宇. 低氧诱导因子-1α对骨髓间充质干细胞成骨分化与血管生成相关因子的影响[J]. 口腔疾病防治, 2021, 29(7): 449-455. |
[2] | 李沛汉,郎凯,宋文. 基于介孔硅的姜黄素-siRNA共递送系统构建及其对巨噬细胞M2型极化的影响[J]. 口腔疾病防治, 2021, 29(5): 306-313. |
[3] | 周安琪,刘佳怡,贾懿楠,向琳. Hippo-YAP信号轴介导骨免疫调节种植体骨结合的研究进展[J]. 口腔疾病防治, 2021, 29(5): 334-339. |
[4] | 王旻,姜楠,祝颂松. 新型钛表面微纳米共存梯度仿生结构对骨髓间充质细胞黏附、增殖及成骨分化的影响[J]. 口腔疾病防治, 2021, 29(4): 226-233. |
[5] | 李天乐,常欣楠,仇旭童,付笛,张陶. 机械刺激对牙周骨组织工程干细胞分化的影响[J]. 口腔疾病防治, 2021, 29(4): 273-278. |
[6] | 陈泽策,龙茜,管晓燕,刘建国. MicroRNA-21调控破骨和成骨分化作用在正畸治疗中的研究进展[J]. 口腔疾病防治, 2021, 29(3): 211-216. |
[7] | 石维薇,丁一,田卫东,郭淑娟. 脂多糖预处理的牙囊细胞外泌体对牙周炎牙周膜细胞成骨分化的影响[J]. 口腔疾病防治, 2021, 29(2): 81-87. |
[8] | 胡开进, 马振, 王一名, 邓天阁. 创伤性颞下颌关节强直发病机制研究新进展[J]. 口腔疾病防治, 2021, 29(12): 793-800. |
[9] | 颜杉钰,梅宏翔,李娟. 间充质干细胞迁移在骨组织损伤修复中的作用[J]. 口腔疾病防治, 2021, 29(12): 854-858. |
[10] | 张凯,刘小元,李蕾,李君,韩祥祯,何惠宇. 细胞膜片复合3D打印马鹿角粉/丝素蛋白/聚乙烯醇支架对羊下颌骨缺损的修复效果[J]. 口腔疾病防治, 2021, 29(10): 669-676. |
[11] | 马灵芝,施娇壮,戈文斌,张琨,余兵,刘亚丽. miR-21对人牙周膜干细胞增殖及成骨分化的影响[J]. 口腔疾病防治, 2020, 28(9): 569-574. |
[12] | 徐鸿玮,韩冰. 颌骨组织工程支架材料机械强度增强方法研究进展[J]. 口腔疾病防治, 2020, 28(9): 600-606. |
[13] | 陈松龄,朱双喜. 上颌窦底黏膜在上颌窦底提升术后窦底空间成骨中的作用[J]. 口腔疾病防治, 2020, 28(8): 477-486. |
[14] | 秦青,宋杨,刘佳,李强. 酪蛋白激酶2相互作用蛋白1对人牙周膜干细胞成骨分化能力的影响[J]. 口腔疾病防治, 2020, 28(7): 421-426. |
[15] | 何梦娇,李丽生,陈玉玲,骆凯. 细胞膜片技术及其在牙周组织再生中的研究进展[J]. 口腔疾病防治, 2020, 28(7): 458-462. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
本作品遵循Creative Commons Attribution 3.0 License授权许可.