[1] |
Tonetti MS, Jepsen S, Jin L, et al. Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: a call for global action[J]. J Clin Periodontol, 2017,44(5):456-462. doi: 10.1111/jcpe.12732.
DOI
URL
|
[2] |
王兴. 第四次全国口腔健康流行病学调查报告[M]. 1版. 北京: 人民卫生出版社, 2019.
|
|
Wang X. The fourth national epidemiological survey report for oral health in China[M]. 1st edition. Beijing: People’s medical Publishing House, 2019.
|
[3] |
Delitto AE, Rocha F, Decker AM, et al. MyD88-mediated innate sensing by oral epithelial cells controls periodontal inflammation[J]. Arch Oral Biol, 2017,87:125-130. doi: 10.1016/j.archoralbio.2017.12.016.
DOI
URL
|
[4] |
Mohanty R, Asopa SJ, Joseph MD, et al. Red complex: polymicrobial conglomerate in oral flora: a review[J]. J Family Med Prim Care, 2019,8(11):3480-3486. doi: 10.4103/jfmpc.jfmpc_759_19.
DOI
PMID
|
[5] |
Arenas Rodrigues VA, de Avila ED, Nakano V, et al. Qualitative, quantitative and genotypic evaluation of Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum isolated from individuals with different periodontal clinical conditions[J]. Anaerobe, 2018,52:50-58. doi: 10.1016/j.anaerobe.2018.05.015.
DOI
URL
|
[6] |
Yang NY, Zhang Q, Li JL, et al. Progression of periodontal inflammation in adolescents is associated with increased number of Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythensis, and Fusobacterium nucleatum[J]. Int J Paediatr Dent, 2014,24(3):226-233. doi: 10.1111/ipd.12065.
DOI
URL
|
[7] |
Ko Y, Lee EM, Park JC, et al. Salivary microbiota in periodontal health and disease and their changes following nonsurgical periodontal treatment[J]. J periodontal implan, 2020,50(3):171-182. doi: 10.5051/jpis.2020.50.3.171.
DOI
|
[8] |
Hartenbach FARR, Silva-Boghossian CM, Colombo APV. The effect of supragingival biofilm re-development on the subgingival microbiota in chronic periodontitis[J]. Arch Oral Biol, 2018,85:51-57. doi: 10.1016/j.archoralbio.2017.10.007.
DOI
URL
|
[9] |
Chaushu S, Wilensky A, Gur C, et al. Direct recognition of Fusobacterium nucleatum by the NK cell natural cytotoxicity receptor NKp46 aggravates periodontal disease[J]. PLoS Pathog, 2012,8(3):e1002601. doi: 10.1371/journal.ppat.1002601.
DOI
URL
|
[10] |
Polak D, Wilensky A, Shapira L, et al. Mouse model of experimental periodontitis induced by Porphyromonas gingivalis/Fusobacterium nucleatum infection: bone loss and host response[J]. J Clin Periodontol, 2010,36(5):406-410. doi: 10.1111/j.1600-051X. 2009.01393.x.
DOI
URL
|
[11] |
Kesavalu L, Sathishkumar S, Bakthavatchalu V, et al. Rat model of polymicrobial infection, immunity, and alveolar bone resorption in periodontal disease[J]. Infect Immun, 2007,75(4):1704-1712. doi: 10.1128/IAI.00733-06.
DOI
URL
|
[12] |
Ben Amara H, Song HY, Ryu E, et al. Effects of quorum-sensing inhibition on experimental periodontitis induced by mixed infection in mice[J]. Eur J Oral Sci, 2018,126(6):449-457. doi: 10.1111/eos.12570.
DOI
URL
|
[13] |
Gao L, Kang M, Zhang MJ, et al. Polymicrobial periodontal disease triggers a wide radius of effect and unique virome[J]. NPJ Biofilms Microbi, 2020,6(1):10. doi: 10.1038/s41522-020-0120-7.
DOI
PMID
|
[14] |
Lima BP, Shi W, Lux R. Identification and characterization of a novel Fusobacterium nucleatum adhesin involved in physical interaction and biofilm formation with Streptococcus gordonii[J]. Micro biology Open, 2017,6(3):e00444. doi: 10.1002/mbo3.444.
DOI
|
[15] |
Tefiku U, Popovska M, Cana A, et al. Determination of the Role of Fusobacterium nucleatum in the pathogenesis in and out the mouth[J]. Pril (Makedon Akad Nauk Umet Odd Med Nauki), 2020,41(1):87-99. doi: 10.2478/prilozi-2020-0026.
DOI
PMID
|
[16] |
Umaña A, Sanders BE, Yoo CC, et al. Utilizing whole Fusobacterium genomes to identify, correct, and characterize potential virulence protein families[J]. J Bacteriol, 2019,201(23):e00273-19. doi: 10.1128/JB.00273-19.
DOI
|
[17] |
Abdulkareem AA, Shelton RM, Landini G, et al. Potential role of periodontal pathogens in compromising epithelial barrier function by inducing epithelial-mesenchymal transition[J]. J Periodontal Res, 2018,53(4):565-574. doi: 10.1111/jre.12546.
DOI
URL
|
[18] |
Hung SC, Huang PR, Almeida-da-Silva CLC, et al. NLRX1 modulates differentially NLRP3 inflammasome activation and NF-κB signaling during Fusobacterium nucleatum infection[J]. Microbes Infect, 2018,20(9-10):615-625. doi: 10.1016/j.micinf.2017. 09.014.
DOI
URL
|
[19] |
Lior D, Shunit CG, Yara I, et al. Identification and characterization of fusolisin, the Fusobacterium nucleatum autotransporter serine protease[J]. Plos One, 2014,9(10):e111329. doi: 10.1371/journal.pone.0111329.
DOI
URL
|
[20] |
Chang MC, Chen YJ, Lian YC, et al. Butyrate stimulates histone H3 acetylation, 8-isoprostane production, RANKL expression, and regulated osteoprotegerin expression/secretion in MG-63 osteoblastic cells[J]. Int J Mol Sci, 2018,19(12):4071. doi: 10.3390/ijms19124071.
DOI
URL
|
[21] |
Alyami HM, Finoti LS, Teixeira HS, et al. Role of NOD1/NOD2 receptors in Fusobacterium nucleatum mediated NETosis[J]. Microb pathog, 2019,131:53-64. doi: 10.1016/j.micpath.2019.03.036.
DOI
URL
|
[22] |
Kurgan Ş, Kansal S, Nguyen D, et al. Strain-specific impact of Fusobacterium nucleatum on neutrophil function[J]. J Periodontol, 2017,88(4):380-389. doi: 10.1902/jop.2016.160212.
DOI
URL
|
[23] |
Kang W, Ji X, Zhang X, et al. Persistent exposure to Fusobacterium nucleatum triggers chemokine/cytokine release and inhibits the proliferation and osteogenic differentiation capabilities of human gingiva-derived mesenchymal stem cells[J]. Front Cell Infect Microbiol, 2019,9:429. doi: 10.3389/fcimb.2019.00429.
DOI
URL
|
[24] |
de Andrade KQ, Almeida-da-Silva CLC, Coutinho-Silva R. Immunological pathways triggered by Porphyromonas gingivalis and Fusobacterium nucleatum: therapeutic possibilities?[J]. Mediat Inflamm, 2019,2019:7241312. doi: 10.1155/2019/7241312.
DOI
|
[25] |
Kang W, Jia Z, Tang D, et al. Fusobacterium nucleatum facilitates apoptosis, ROS generation, and inflammatory cytokine production by activating AKT/MAPK and NF-κB signaling pathways in human gingival fibroblasts[J]. Oxid Med Cell Longev, 2019,2019:1681972. doi: 10.1155/2019/1681972.
DOI
|
[26] |
Bui FQ, Almeida-Da-Silva CLC, Huynh B, et al. Association between periodontal pathogens and systemic disease[J]. Biomed J, 2019,42(1):27-35. doi: 10.1016/j.bj.2018.12.001.
DOI
URL
|
[27] |
Vander Haar EL, So J, Gyamfi-Bannerman C, et al. Fusobacterium nucleatum and adverse pregnancy outcomes: a review of epidemiological and mechanistic evidence[J]. Anaerobe, 2018,50:55-59. doi: 10.1016/j.anaerobe.2018.01.008.
DOI
URL
|
[28] |
McCuaig R, Wong D, Gardiner FW, et al. Periodontal pathogens in the placenta and membranes in term and preterm birth[J]. Placenta, 2018,68:40-43. doi: 10.1016/j.placenta.2018.06.310.
DOI
PMID
|
[29] |
Charles C, Patricia K, Karen W, et al. The oral microbiome and adverse pregnancy outcomes[J]. Int J Womens Health, 2017,9:551-559. doi: 10.2147/IJWH.S142730.
DOI
PMID
|
[30] |
Caitlin A, Brennan A, Wendy S, et al. Fusobacterium nucleatum - symbiont, opportunist and oncobacterium[J]. Nat Rev Microbiol, 2018,17(3):156-166. doi: 10.1038/s41579-018-0129-6.
DOI
URL
|
[31] |
Koliarakis I, Messaritakis I, Nikolouzakis TK, et al. Oral bacteria and intestinal dysbiosis in colorectal cancer[J]. Int J Mol Sci, 2019,20(17) : 4146. doi: 10.3390/ijms20174146.
DOI
URL
|