[1] |
Bewley AF, Farwell DG. Oral leukoplakia and oral cavity squamous cell carcinoma[J]. Clin Dermatol, 2017,35(5):461-467. doi: 10.1016/j.clindermatol.2017.06.008.
DOI
URL
|
[2] |
Mehanna HM, Rattay T, Smith J, et al. Treatment and follow-up of oral dysplasia-a systematic review and meta-analysis[J]. Head Neck, 2009,31(12):1600-1609. doi: 10.1002/hed.21131.
DOI
URL
|
[3] |
Hema KN, Smitha T, Sheethal HS, et al. Epigenetics in oral squamous cell carcinoma[J]. J Oral Maxillofac Pathol, 2017,21(2):252-259. doi: 10.4103/jomfp.JOMFP_150_17.
DOI
URL
|
[4] |
Zhang J, Yang C, Wu C, et al. DNA methyltransferases in cancer: biology, paradox, aberrations, and targeted therapy[J]. Cancers (Basel), 2020,12(8):2123. doi: 10.3390/cancers12082123.
DOI
URL
|
[5] |
Liu X, Zhang T, Li Y, et al. The role of methylation in the CpG island of the ARHI promoter region in cancers[J]. Adv Exp Med Biol, 2020,1255:123-132. doi: 10.1007/978-981-15-4494-1_10.
DOI
|
[6] |
Chatterjee A, Rodger EJ, Morison IM, et al. Tools and strategies for analysis of Genome-Wide and Gene-Specific DNA methylation patterns[J]. Methods Mol Biol, 2017,1537:249-277. doi: 10.1007/978-1-4939-6685-1_15.
DOI
|
[7] |
Stansfield JC, Rusay M, Shan R, et al. Toward Signaling-Driven biomarkers immune to normal tissue contamination[J]. Cancer Inform, 2016,15:15-21. doi: 10.4137/CIN.S32468.
DOI
|
[8] |
Bhosale PG, Cristea S, Ambatipudi S, et al. Chromosomal alterations and gene expression changes associated with the progression of leukoplakia to advanced gingivobuccal cancer[J]. Transl Oncol, 2017,10(3):396-409. doi: 10.1016/j.tranon.2017.03.008.
DOI
URL
|
[9] |
Du P, Zhang X, Huang CC, et al. Comparison of beta-value and m-value methods for quantifying methylation levels by microarray analysis[J]. BMC Bioinformatics, 2010,11(1):587. doi: 10.1186/1471-2105-11-587.
DOI
URL
|
[10] |
Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015,43(7):e47. doi: 10.1093/nar/gkv007.
DOI
URL
|
[11] |
Eckersley-Maslin M. Keeping your options open: insights from Dppa2/4 into how epigenetic priming factors promote cell plasticity[J]. Biochem Soc Trans, 2020,48(6):2891-2902. doi: 10.1042/BST20200873.
DOI
URL
|
[12] |
Oleksiewicz U, Machnik M. Causes, effects, and clinical implications of perturbed patterns within the cancer epigenome[J]. Semin Cancer Biol, 2020:S1044-579X(20)30274. doi: 10.1016/j.semcancer.2020.12.014.
DOI
|
[13] |
Wang J, Yang J, Li D, et al. Technologies for targeting DNA methylation modifications: basic mechanism and potential application in cancer[J]. Biochim Biophys Acta Rev Cancer, 2021,1875(1):188454. doi: 10.1016/j.bbcan.2020.188454.
DOI
URL
|
[14] |
Romanowska K, Sobecka A, Rawłuszko-Wieczorek AA, et al. Head and neck squamous cell carcinoma: epigenetic landscape[J]. Diagnostics (Basel), 2020,11(1):34. doi: 10.3390/diagnostics11010034.
DOI
|
[15] |
Arnold L, Enders J, Thomas SM. Activated HGF-c-Met axis in head and neck cancer[J]. Cancers (Basel), 2017,9(12):169. doi: 10.3390/cancers9120169.
DOI
URL
|
[16] |
Abe M, Yamashita S, Mori Y, et al. High-risk oral leukoplakia is associated with aberrant promoter methylation of multiple genes[J]. BMC Cancer, 2016,16(1):350. doi: 10.1186/s12885-016-2371-5.
DOI
URL
|
[17] |
Zhang XY, Li M, Sun K, et al. Decreased expression of GRIM-19 by DNA hypermethylation promotes aerobic glycolysis and cell proliferation in head and neck squamous cell carcinoma[J]. Oncotarget, 2015,6(1):101-115. doi: 10.18632/oncotarget.2684.
DOI
URL
|
[18] |
Schmitt K, Molfenter B, Laureano NK, et al. Somatic mutations and promotor methylation of the ryanodine receptor 2 is a common event in the pathogenesis of head and neck cancer[J]. Int J Cancer, 2019,145(12):3299-3310. doi: 10.1002/ijc.32481.
DOI
PMID
|
[19] |
Owusu OE, Rusciano I, Marvi MV, et al. Phosphoinositide-Dependent signaling in cancer: a focus on phospholipase C isozymes[J]. Int J Mol Sci, 2020,21(7):2581. doi: 10.3390/ijms21072581.
DOI
URL
|