[1] |
Colevas AD, Yom SS, Pfister DG, et al. NCCN guidelines insights: head and neck cancers, version 1.2018[J]. J Natl Compr Canc Netw, 2018,16(5):479-490. doi: 10.6004/jnccn.2018.0026.
DOI
URL
|
[2] |
Vermorken JB, Mesia R, Rivera F, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer[J]. N Engl J Med, 2008,359(11):1116-1127. doi: 10.1056/NEJMoa0802656.
DOI
URL
|
[3] |
Mcpherson RC, Konkel JE, Prendergast CT, et al. Epigenetic modification of the PD-1 (Pdcd1) promoter in effector CD4(+) T cells tolerized by peptide immunotherapy[J]. Elife, 2014,3:e03416. doi: 10.7554/eLife.03416.
DOI
URL
|
[4] |
Kleffel S, Posch C, Barthel SR, et al. Melanoma Cell-Intrinsic PD-1 receptor functions promote tumor growth[J]. Cell, 2015,162(6):1242-1256. doi: 10.1016/j.cell.2015.08.052.
DOI
PMID
|
[5] |
Francisco LM, Salinas VH, Brown KE, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells[J]. J Exp Med, 2009,206(13):3015-3029. doi: 10.1084/jem.20090847.
DOI
URL
|
[6] |
Neel BG, Gu H, Pao L. The ′Shp′ing news: SH2 domain-containing tyrosine phosphatases in cell signaling[J]. Trends Biochem Sci, 2003,28(6):284-293. doi: 10.1016/S0968-0004(03)00091-4.
DOI
URL
|
[7] |
Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation[J]. J Exp Med, 2000,192(7):1027-1034. doi: 10.1084/jem.192.7.1027.
DOI
URL
|
[8] |
Rotte A, Jin JY, Lemaire V. Mechanistic overview of immune checkpoints to support the rational design of their combinations in cancer immunotherapy[J]. Ann Oncol, 2018,29(1):71-83. doi: 10.1093/annonc/mdx686.
DOI
URL
|
[9] |
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy[J]. Nat Rev Cancer, 2012,12(4):252-264. doi: 10.1038/nrc3239.
DOI
URL
|
[10] |
Ferris RL, Blumenschein G, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck[J]. N Engl J Med, 2016,375(19):1856-1867. doi: 10.1056/NEJMoa1602252.
DOI
URL
|
[11] |
Seiwert TY, Burtness B, Mehra R, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial[J]. Lancet Oncol, 2016,17(7):956-965. doi: 10.1016/S1470-2045(16)30066-3.
DOI
URL
|
[12] |
Mehra R, Seiwert TY, Gupta S, et al. Efficacy and safety of pembrolizumab in recurrent/metastatic head and neck squamous cell carcinoma: pooled analyses after long-term follow-up in KEYNOTE-012[J]. Br J Cancer, 2018,119(2):153-159. doi: 10.1038/s41416-018-0131-9.
DOI
URL
|
[13] |
Cohen E, Soulières D, Le Tourneau C, et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study[J]. Lancet, 2019,393(1167):156-167. doi: 10.1016/S0140-6736(18)31999-8.
DOI
URL
|
[14] |
Burtness B, Harrington KJ, Greil R, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study[J]. Lancet, 2019,394(1212):1915-1928. doi: 10.1016/S0140-6736(19)32591-7.
DOI
URL
|
[15] |
Segal NH, Ou S, Balmanoukian A, et al. Safety and efficacy of durvalumab in patients with head and neck squamous cell carcinoma: results from a phase I/II expansion cohort[J]. Eur J Cancer, 2019,109:154-161. doi: 10.1016/j.ejca.2018.12.029.
DOI
|
[16] |
Colevas AD, Bahleda R, Braiteh F, et al. Safety and clinical activity of atezolizumab in head and neck cancer: results from a phase I trial[J]. Ann Oncol, 2018,29(11):2247-2253. doi: 10.1093/annonc/mdy411.
DOI
URL
|
[17] |
Schweizer C, Schubert P, Rutzner S, et al. Prospective evaluation of the prognostic value of immune-related adverse events in patients with non-melanoma solid tumour treated with PD-1/PD-L1 inhibitors alone and in combination with radiotherapy[J]. Eur J Cancer, 2020,140:55-62. doi: 10.1016/j.ejca.2020.09.001.
DOI
URL
|
[18] |
Wang F, Luo Y, Tian X, et al. Impact of radiotherapy concurrent with Anti-PD-1 therapy on the lung tissue of Tumor-Bearing mice[J]. Radiat Res, 2019,191(3):271-277. doi: 10.1667/RR15182.1.
DOI
URL
|
[19] |
Koo T, Kim IA. Radiotherapy and immune checkpoint blockades: a snapshot in 2016[J]. Radiat Oncol J, 2016,34(4):250-259. doi: 10.3857/roj.2016.02033.
DOI
URL
|
[20] |
Siu LL, Even C, Mesía R, et al. Safety and efficacy of durvalumab with or without tremelimumab in patients with PD-L1-Low/negative recurrent or metastatic HNSCC: the phase 2 CONDOR randomized clinical trial[J]. JAMA Oncol, 2019,5(2):195-203. doi: 10.1001/jamaoncol.2018.4628.
DOI
URL
|
[21] |
Hellmann MD, Ciuleanu TE, Pluzanski A, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden[J]. N Engl J Med, 2018,378(22):2093-2104. doi: 10.1056/NEJMoa1801946.
DOI
URL
|
[22] |
Concha-Benavente F, Ferris RL. Oncogenic growth factor signaling mediating tumor escape from cellular immunity[J]. Curr Opin Immunol, 2017,45(8):52-59. doi: 10.1016/j.coi.2017.01.004.
DOI
URL
|
[23] |
Dirix L, Triebel F. AIPAC: a phase IIb study of eftilagimod alpha (IMP321 or LAG-3Ig) added to weekly paclitaxel in patients.
|