[1] |
Song W, Ge S. Application of antimicrobial nanoparticles in dentistry[J]. Molecules, 2019, 24(6):1033. doi: 10.3390/molecules24061033.
DOI
URL
|
[2] |
Mandall NA, Millett DT, Mattick CR, et al. Adhesives for fixed orthodontic brackets[J]. Cochrane Database Syst Rev, 2003, (2): CD002282. doi: 10.1002/14651858.CD002282.
DOI
|
[3] |
Noori AJ, Kareem F. The effect of magnesium oxide nanoparticles on the antibacterial and antibiofilm properties of glass-ionomer cement[J]. Heliyon, 2019, 5(10):e02568. doi: 10.1016/j.heliyon.2019.e02568.
DOI
|
[4] |
Enan ET, Hammad SM. Microleakage under orthodontic bands cemented with nano-hydroxyapatite-modified glass ionomer[J]. Angle Orthod, 2013, 83(6):981-986. doi: 10.2319/022013-147.1.
DOI
URL
|
[5] |
Garcia P, Cardia M, Francisconi RS, et al. Antibacterial activity of glass ionomer cement modified by zinc oxide nanoparticles[J]. Microsc Res Tech, 2017, 80(5):456-461. doi: 10.1002/jemt.22814.
DOI
URL
|
[6] |
Yassaei S, Nasr A, Zandi H, et al. Comparison of antibacterial effects of orthodontic composites containing different nanoparticles on Streptococcus mutans at different times[J]. Dental Press J Orthod, 2020, 25(2):52-60. doi: 10.1590/2177-6709.25.2.052-060.oar.
DOI
PMID
|
[7] |
Moreira DM, Oei J, Rawls HR, et al. A novel antimicrobial orthodontic band cement with in situ-generated silver nanoparticles[J]. Angle Orthod, 2015, 85(2):175-183. doi: 10.2319/022314-127.1.
DOI
PMID
|
[8] |
Degrazia FW, Leitune VC, Garcia IM, et al. Effect of silver nanoparticles on the physicochemical and antimicrobial properties of an orthodontic adhesive[J]. J Appl Oral Sci, 2016, 24(4):404-410. doi: 10.1590/1678-775720160154.
DOI
URL
|
[9] |
Eslamian L, Borzabadi-Farahani A, Karimi S, et al. Evaluation of the shear bond strength and antibacterial activity of orthodontic adhesive containing silver nanoparticle, an in-vitro study[J]. Nanomaterials (Basel), 2020, 10(8):1466. doi: 10.3390/nano10081466.
DOI
URL
|
[10] |
Sodagar A, Akhavan A, Hashemi E, et al. Evaluation of the antibacterial activity of a conventional orthodontic composite containing silver/hydroxyapatite nanoparticles[J]. Prog Orthod, 2016, 17(1):40. doi: 10.1186/s40510-016-0153-x.
DOI
PMID
|
[11] |
Sodagar A, Akhoundi M, Bahador A, et al. Effect of TiO2 nanoparticles incorporation on antibacterial properties and shear bond strength of dental composite used in orthodontics[J]. Dental Press J Orthod, 2017, 22(5):67-74. doi: 10.1590/2177-6709.22.5.067-074.oar.
DOI
PMID
|
[12] |
Pourhajibagher M, Salehi VA, Takzaree N, et al. Physico-mechanical and antimicrobial properties of an orthodontic adhesive containing cationic curcumin doped zinc oxide nanoparticles subjected to photodynamic therapy[J]. Photodiagnosis Photodyn Ther, 2019, 25:239-246. doi: 10.1016/j.pdpdt.2019.01.002.
DOI
PMID
|
[13] |
Mirhashemi A, Bahador A, Kassaee M, et al. Antimicrobial effect of nano-zinc oxide and nano-chitosan particles in dental composite used in orthodontics[J]. J Med Bacteriol, 2013, 2(3/4):1-10.
|
[14] |
Przybyłek I, Karpiński TM. Antibacterial properties of propolis[J]. Molecules, 2019, 24(11):2047. doi: 10.3390/molecules24112047.
DOI
URL
|
[15] |
Sodagar A, Akhavan A, Arab S, et al. Evaluation of the effect of propolis nanoparticles on antimicrobial properties and shear bond strength of orthodontic composite bonded to bovine enamel[J]. Front Dent, 2019, 16(2):96-104. doi: 10.18502/fid.v16i2.1360.
DOI
|
[16] |
Yi J, Weir MD, Melo MS, et al. Novel rechargeable nano-CaF2 orthodontic cement with high levels of long-term fluoride release[J]. J Dent, 2019, 90:103214. doi: 10.1016/j.jdent. 2019.103214.
DOI
|
[17] |
Khoroushi M, Kachuie M. Prevention and treatment of white spot lesions in orthodontic patients[J]. Contemp Clin Dent, 2017, 8(1):11-19. doi: 10.4103/ccd.ccd_216_17.
DOI
URL
|
[18] |
Asiry MA, Alshahrani I, Alqahtani ND, et al. Efficacy of yttrium (III) fluoride nanoparticles in orthodontic bonding[J]. J NanosciNanotechnol, 2019, 19(2):1105-1110. doi: 10.1166/jnn.2019.15894.
DOI
|
[19] |
Xie XJ, Xing D, Wang L, et al. Novel rechargeable calcium phosphate nanoparticle-containing orthodontic cement[J]. Int J Oral Sci, 2017, 9(1):24-32. doi: 10.1038/ijos.2016.40.
DOI
URL
|
[20] |
Liu Y, Zhang L, Niu LN, et al. Antibacterial and remineralizing orthodontic adhesive containing quaternary ammonium resin monomer and amorphous calcium phosphate nanoparticles[J]. J Dent, 2018, 72(72):53-63. doi: 10.1016/j.jdent.2018.03.004.
DOI
URL
|
[21] |
Wang X, Wang B, Wang Y. Antibacterial orthodontic cement to combat biofilm and white spot lesions[J]. Am J Orthod Dentofacial Orthop, 2015, 148(6):974-981. doi: 10.1016/j.ajodo.2015.06.017.
DOI
URL
|
[22] |
Zaltsman N, Kesler SD, Polak D, et al. Antibacterial orthodontic adhesive incorporating polyethyleneimine nanoparticles[J]. Oral Health Prev Dent, 2017, 15(3):245-250. doi: 10.3290/j.ohpd.a38525.
DOI
|
[23] |
Yi J, Dai Q, Weir MD, et al. A nano-CaF2-containing orthodontic cement with antibacterial and remineralization capabilities to combat enamel white spot lesions[J]. J Dent, 2019, 89:103172.doi: 10.1016/j.jdent.2019.07.010.
DOI
|
[24] |
Ma Y, Zhang N, Weir MD, et al. Novel multifunctional dental cement to prevent enamel demineralization near orthodontic brackets[J]. J Dent, 2017, 64:58-67. doi: 10.1016/j.jdent.2017.06.004.
DOI
URL
|
[25] |
Kachoei M, Nourian A, Divband B, et al. Zinc-oxide nanocoating for improvement of the antibacterial and frictional behavior of nickel-titanium alloy[J]. Nanomedicine (Lond), 2016, 11(19):2511-2527. doi: 10.2217/nnm-2016-0171.
DOI
URL
|
[26] |
Venkatesan K, Kailasam V, Padmanabhan S. Evaluation of titanium dioxide coating on surface roughness of nickel-titanium archwires and its influence on Streptococcus mutans adhesion and enamel mineralization: a prospective clinical study[J]. Am J Orthod Dentofacial Orthop, 2020, 158(2):199-208. doi: 10.1016/j.ajodo.2019.07.019.
DOI
URL
|
[27] |
Cao B, Wang Y, Li N, et al. Preparation of an orthodontic bracket coated with an nitrogen-doped TiO(2-x)N(y)thin film and examination of its antimicrobial performance[J]. Dent Mater J, 2013, 32(2):2012-2155.
|
[28] |
Salehi P, Babanouri N, Roein-Peikar M, et al. Long-term antimicrobial assessment of orthodontic brackets coated with nitrogen-doped titanium dioxide against Streptococcus mutans[J]. Prog Orthod, 2018, 19(1):35. doi: 10.1186/s40510-018-0236-y.
DOI
URL
|
[29] |
Metin-Gürsoy G, Taner L, Akca G. Nanosilver coated orthodontic brackets: in vivo antibacterial properties and ion release[J]. Eur J Orthod, 2017, 39(1):9-16. doi: 10.1093/ejo/cjv097.
DOI
URL
|
[30] |
Prabha RD, Kandasamy R, Sivaraman US, et al. Antibacterial nanosilver coated orthodontic bands with potential implications in dentistry[J]. Indian J Med Res, 2016, 144(4):580-586. doi: 10.4103/0971-5916.200895.
DOI
|
[31] |
Hernández-Gómora AE, Lara-Carrillo E, Robles-Navarro JB, et al. Biosynjournal of silver nanoparticles on orthodontic elastomeric modules: evaluation of mechanical and antibacterial properties[J]. Molecules, 2017, 22(9):1407. doi: 10.3390/molecules22091407.
DOI
URL
|
[32] |
Farhadian N, Usefi MR, Khanizadeh S, et al. Streptococcus mutans counts in patients wearing removable retainers with silver nanoparticles vs those wearing conventional retainers: a randomized clinical trial[J]. Am J Orthod Dentofacial Orthop, 2016, 149(2):155-160. doi: 10.1016/j.ajodo.2015.07.031.
DOI
URL
|
[33] |
Perrini F, Lombardo L, Arreghini A, et al. Caries prevention during orthodontic treatment: in-vivo assessment of high-fluoride varnish to prevent white spot lesions[J]. Am J Orthod Dentofacial Orthop, 2016, 149(2):238-243. doi: 10.1016/j.ajodo.2015.07.039.
DOI
URL
|
[34] |
Targino AG, Flores MA, Dos Santos Junior VE, et al. An innovative approach to treating dental decay in children. A new anti-caries agent[J]. J Mater Sci Mater Med, 2014, 25(8):2041-2047. doi: 10.1007/s10856-014-5221-5.
DOI
URL
|
[35] |
Wassel MO, Khattab MA. Antibacterial activity against Streptococcus mutans and inhibition of bacterial induced enamel demineralization of propolis, miswak, and chitosan nanoparticles based dental varnishes[J]. J Adv Res, 2017, 8(4):387-392. doi: 10.1016/j.jare.2017.05.006.
DOI
URL
|
[36] |
Liu Y, Ren Y, Li Y, et al. Nanocarriers with conjugated antimicrobials to eradicate pathogenic biofilms evaluated in murine in vivo and human ex vivo infection models[J]. Acta Biomater, 2018, 79(79):331-343. doi: 10.1016/j.actbio.2018.08.038.
DOI
URL
|
[37] |
He J, Bao Y, Li J, et al. Nanocomplexes of carboxymethyl chitosan/amorphous calcium phosphate reduce oral bacteria adherence and biofilm formation on human enamel surface[J]. J Dent, 2019, 80:15-22. doi: 10.1016/j.jdent.2018.11.003.
DOI
URL
|
[38] |
Zhu Y, Yan J, Mujtaba BM, et al. The dual anti-caries effect of carboxymethyl chitosan nanogel loaded with chimeric lysin ClyR and amorphous calcium phosphate[J]. Eur J Oral Sci, 2021, 129(3):e12784. doi: 10.1111/eos.12784.
DOI
|
[39] |
谢琳, 冯晓黎, 邓梓, 等. 口腔纳米材料的神经毒性及作用机制[J]. 口腔疾病防治, 2020, 28(9):594-599. doi: 10.12016/j.issn.2096-1456.2020.09.009.
DOI
|
|
Xie L, Feng XL, Deng Z, et al. Neurotoxicity and mechanism of dental nanomaterials[J]. J Prev Treat Stomatol Dis, 2020, 28(9):594-599. doi: 10.12016/j.issn.2096-1456.2020.09.009.
DOI
|