[1] |
Das M, Bhimani K, Balla VK. In vitro tribological and biocompatibility evaluation of sintered silicon nitride[J]. Mater Lett, 2018, 212:130-133. doi: 10.1016/j.matlet.2017.10.061.
DOI
URL
|
[2] |
Neumann A, Reske T, Held M, et al. Comparative investigation of the biocompatibility of various silicon nitride ceramic qualities in vitro[J]. J Mater Sci Mater Med, 2004, 15(10):1135-1140. doi: 10.1023/B:JMSM.0000046396.14073.92.
DOI
URL
|
[3] |
Mobbs RJ, Rao PJ, Phan K, et al. Anterior lumbar interbody fusion using reaction bonded silicon nitride implants: long-term case series of the first synthetic anterior lumbar interbody fusion spacer implanted in humans[J]. World Neurosurg, 2018, 120:256-264. doi: 10.1016/j.wneu.2018.08.237.
DOI
URL
|
[4] |
Dai Y, Guo H, Chu L, et al. Promoting osteoblasts responses in vitro and improving osteointegration in vivo through bioactive coating of nanosilicon nitride on polyetheretherketone[J]. J Orthop Translat, 2020, 24:198-208. doi: 10.1016/j.jot.2019.10.011.
DOI
URL
|
[5] |
Boschetto F, Adachi T, Horiguchi S, et al. In situ molecular vibration insights into the antibacterial behavior of silicon nitride bioceramic versus gram-negative Escherichia coli[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2019, 223:117299. doi: 10.1016/j.saa.2019.117299.
DOI
|
[6] |
Hu X, Mei S, Wang F, et al. A microporous surface containing Si(3)N(4)/Ta microparticles of PEKK exhibits both antibacterial and osteogenic activity for inducing cellular response and improving osseointegration[J]. Bioact Mater, 2021, 6(10):3136-3149. doi: 10.1016/j.bioactmat.2021.02.027.
DOI
|
[7] |
Pezzotti G. Silicon nitride: a bioceramic with a gift[J]. ACS Appl Mater Interfaces, 2019, 11(30):26619-26636. doi: 10.1021/acsami.9b07997.
DOI
URL
|
[8] |
Bock RM, Jones EN, Ray DA, et al. Bacteriostatic behavior of surface modulated silicon nitride in comparison to polyetheretherketone and titanium[J]. J Biomed Mater Res A, 2017, 105(5):1521-1534. doi: 10.1002/jbm.a.35987.
DOI
URL
|
[9] |
Ge J, Wang F, Xu Z, et al. Influences of niobium pentoxide on roughness, hydrophilicity, surface energy and protein absorption, and cellular responses to PEEK based composites for orthopedic applications[J]. J Mater Chem B, 2020, 8(13):2618-2626. doi: 10.1039/c9tb02456e.
DOI
URL
|
[10] |
Webster TJ, Patel A, Rahaman MN, et al. Anti-infective and osteointegration properties of silicon nitride, poly(ether ether ketone), and titanium implants[J]. Acta Biomater, 2012, 8(12):4447-4454. doi: 10.1016/j.actbio.2012.07.038.
DOI
PMID
|
[11] |
Kersten R, Wu G, Pouran B, et al. Comparison of polyetheretherketone versus silicon nitride intervertebral spinal spacers in a caprine model[J]. J Biomed Mater Res B Appl Biomater, 2019, 107(3):688-699.
DOI
URL
|
[12] |
Calvert GC, Vanburen H 3rd, Rambo WJ, et al. Clinical outcomes for lumbar fusion using silicon nitride versus other biomaterials[J]. J Spine Surg, 2020, 6(1):33-48. doi: 10.21037/jss.2019.12.11.
DOI
PMID
|
[13] |
Beck GR Jr, Ha SW, Camalier CE, et al. Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo[J]. Nanomedicine, 2012, 8(6):793-803. doi: 10.1016/j.nano, 2011, 8(6): 793-803.
DOI
|
[14] |
Pezzotti G, Marin E, Adachi T, et al. Incorporating Si3N4 into PEEK to produce antibacterial, osteocondutive, and radiolucent spinal implants[J]. Macromol Biosci, 2018, 18(6):201800033. doi: 10.1002/mabi.201800033.
DOI
|
[15] |
Sainz M, Serena S, Belmonte M, et al. Protein adsorption and in vitro behavior of additively manufactured 3D-silicon nitride scaffolds intended for bone tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2020, 115:110734. doi: 10.1016/j.msec.2020.110734.
DOI
|
[16] |
Rautray TR, Narayanan R, Kim KH. Ion implantation of titanium based biomaterials[J]. Prog Mater Sci, 2011, 56(8):1137-1177. doi: 10.1016/j.pmatsci.
DOI
URL
|
[17] |
Boyan BD, Lossdörfer S, Wang L, et al. Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies[J]. Eur Cell Mater, 2003, 6:22-27. doi: 10.22203/ecm.v006a03.
DOI
PMID
|
[18] |
Xu Z, Wu H, Wang F, et al. A hierarchical nanostructural coating of amorphous silicon nitride on polyetheretherketone with antibacterial activity and promoting responses of rBMSCs for orthopedic applications[J]. J Mater Chem B, 2019, 7(39):6035-6047. doi: 10.1039/c9tb01565e.
DOI
URL
|
[19] |
Pezzotti G, Adachi T, Boschetto F, et al. Off-stoichiometric reactions at the cell-substrate biomolecular interface of biomaterials: in situ and ex situ monitoring of cell proliferation, differentiation, and bone tissue formation[J]. Int J Mol Sci, 2019, 20(17):4080. doi: 10.3390/ijms20174080.
DOI
URL
|
[20] |
Pezzotti G, Bock RM, Mcentire BJ, et al. Silicon nitride bioceramics induce chemically driven lysis in porphyromonas gingivalis[J]. Langmuir, 2016, 32(12):3024-3035. doi: 10.1021/acs.langmuir.6b00393.
DOI
URL
|
[21] |
Zanocco M, Boschetto F, Zhu W, et al. 3D-additive deposition of an antibacterial and osteogenic silicon nitride coating on orthopaedic titanium substrate[J]. J Mech Behav Biomed Mater, 2020, 103:103557. doi: 10.1016/j.jmbbm.2019.103557.
DOI
|
[22] |
Ishikawa M, De MK, Mcentire BJ, et al. Surface topography of silicon nitride affects antimicrobial and osseointegrative properties of tibial implants in a murine model[J]. J Biomed Mater Res A, 2017, 105(12):3413-3421. doi: 10.1002/jbm.a.36189.
DOI
URL
|
[23] |
Wu J, Liu YJ, Zhang H, et al. silicon nitride as a potential candidate for dental implants: osteogenic activities and antibacterial properties[J]. J Mater Res, 2021, 36(9):1866-1882. doi: 10.1557/s43578-021-00249-8.
DOI
URL
|
[24] |
Rahaman M, Xiao W. Silicon nitride bioceramics in healthcare[J]. Int J Appl Ceram Technol, 2017, 15(3):766-774. doi: 10.1111/ijac.12835.
DOI
URL
|
[25] |
Liu HW, Wei DX, Deng JZ, et al. Combined antibacterial and osteogenic in situ effects of a bifunctional titanium alloy with nanoscale hydroxyapatite coating[J]. Artif Cells Nanomed Biotechnol, 2018, 46(sup3):S460-S470. doi: 10.1080/21691401.2018.1499662.
DOI
URL
|
[26] |
Pakharukova N, Tuittila M, Paavilainen S, et al. Structural basis for acinetobacter baumannii biofilm formation[J]. Proc Natl Acad Sci U S A, 2018, 115(21):5558-5563. doi: 10.1073/pnas.1800961115.
DOI
PMID
|
[27] |
Boschetto F, Toyama N, Horiguchi S, et al. In vitro antibacterial activity of oxide and non-oxide bioceramics for arthroplastic devices: II. fourier transform infrared spectroscopy[J]. Analyst, 2018, 143(9):2128-2140. doi: 10.1039/c8an00234g.
DOI
URL
|