[1] |
González-Moles M, Warnakulasuriya S, González-Ruiz I, et al. Worldwide prevalence of oral lichen planus: a systematic review and meta-analysis[J]. Oral Dis, 2021, 27(4): 813-828. doi: 10. 1111/odi.13323.
DOI
URL
|
[2] |
Iocca O, Sollecito TP, Alawi F, et al. Potentially malignant disorders of the oral cavity and oral dysplasia: a systematic review and meta-analysis of malignant transformation rate by subtype[J]. Head Neck, 2020, 42(3): 539-555. doi: 10.1002/hed.26006.
DOI
URL
|
[3] |
田原野, 唐瞻贵. CD4+T细胞平衡在口腔癌及癌前病损中的研究进展[J]. 口腔疾病防治, 2019, 27(2): 115-121. doi: 10.12016/j.issn.2096-1456.2019.02.010.
DOI
|
|
Tian YY, Tang ZG. Research progress on the CD4+ T cell balance in oral cancer and precancerous diseases[J]. J Prev Treat Stomatol Dis, 2019, 27(2): 115-121. doi: 10.12016/j.issn.2096-1456. 2019.02.010.
DOI
|
[4] |
Wang F, Zhang J, Zhou G. The mTOR-glycolytic pathway promotes T-cell immunobiology in oral lichen planus[J]. Immunobiology, 2020, 225(3): 151933. doi: 10.1016/j.imbio.2020.151933.
DOI
URL
|
[5] |
Fu Y, Lin Q, Zhang Z, et al. Therapeutic strategies for the costimulatory molecule OX40 in T-cell-mediated immunity[J]. Acta Pharm Sin B, 2020, 10(3): 414-433. doi: 10.1016/j.apsb.2019.08.010.
DOI
URL
|
[6] |
Willoughby J, Griffiths J, Tews I, et al. OX40: structure and function-what questions remain?[J]. Mol Immunol, 2017, 83: 13-22. doi: 10.1016/j.molimm.2017.01.006.
DOI
PMID
|
[7] |
Lane P. Role of OX40 signals in coordinating CD4 T cell selection,migration,and cytokine differentiation in T helper(Th)1 and Th2 cells[J]. J Exp Med, 2000, 191(2): 201-206. doi: 10.1084/jem. 191.2.201.
DOI
PMID
|
[8] |
Saravia J, Chapman NM, Chi Hongbo. Helper T cell differentiation[J]. Cell Mol Immunol, 2019, 16(7): 634-643. doi: 10.1038/s41423-019-0220-6.
DOI
PMID
|
[9] |
Read KA, Powell MD, Sreekumar BK, et al. In vitro differentiation of effector CD4(+) T helper cell subsets[J]. Methods Mol Biol, 2019, 1960: 75-84. doi: 10.1007/978-1-4939-9167-9_6.
DOI
|
[10] |
Wei Z, Yuan J, Wang G, Ocansey DKW, Xu Z, Mao F. Regulatory effect of mesenchymal stem cells on t cell phenotypes in autoimmune diseases[J]. Stem Cells Int, 2021, 2021: 5583994. doi: 10.1155/2021/5583994.
DOI
|
[11] |
Wang L, Wu Wei, Chen JiJun, et al. MicroRNA microarray-based identification of involvement of miR-155 and miR-19a in development of oral lichen planus (OLP) by modulating Th1/Th2 balance via targeting eNOS and Toll-like receptor 2 (TLR2)[J]. Med Sci Monit, 2018, 24: 3591-3603. doi: 10.12659/MSM.907497.
DOI
URL
|
[12] |
Wang H, Zhang D, Han Q, et al. Role of distinct CD4(+)T helper subset in pathogenesis of oral lichen planus[J]. J Oral Pathol Med, 2016, 45(6): 385-393. doi: 10.1111/jop.12405.
DOI
PMID
|
[13] |
Sun A, Wu YH, Chang JYF, et al. FoxP3CD4, IFN-γCD4, and IFN-γCD8 cell levels in erosive and non-erosive types of oral lichen planus patients[J]. J Dent Sci, 2021, 16(2): 751-756. doi: 10.1016/j.jds.2021.01.005.
DOI
URL
|
[14] |
Wei W, Sun Q, Deng YW, et al. Mixed and inhomogeneous expression profile of Th1/Th2 related cytokines detected by cytometric bead array in the saliva of patients with oral lichen planus[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2018, 126(2): 142-151. doi: 10.1016/j.oooo.2018.02.013.
DOI
URL
|
[15] |
Ma RJ, He MJ, Tan YQ, et al. Artemisinin and its derivatives: a potential therapeutic approach for oral lichen planus[J]. Inflamm Res, 2019, 68(4): 297-310. doi: 10.1007/s00011-019-01216-0.
DOI
URL
|
[16] |
Wing JB, Tanaka A, Sakaguchi S. Human FOXP3(+) regulatory T cell heterogeneity and function in autoimmunity and cancer[J]. Immunity, 2019, 50(2): 302-316. doi: 10.1016/j.immuni.2019.01.020.
DOI
URL
|
[17] |
Schreurs O, Karatsaidis A, Schenck K. Phenotypically non-suppressive cells predominate among FoxP3-positive cells in oral lichen planus[J]. J Oral Pathol Med, 2016, 45(10): 766-773. doi: 10.1111/jop.12447.
DOI
PMID
|
[18] |
胡文芸, 黄韵颖, 柳汀, 等. 白细胞介素35对口腔扁平苔藓患者外周血辅助性T细胞17与调节性T细胞平衡的影响[J]. 中华口腔医学杂志, 2020, 55(2): 80-85. doi: 10.3760/cma.j.issn.1002-0098.2020.02.002.
DOI
|
|
Hu WY, Huang YY, Liu T, et al. Effects of interleukin-35 on the balance of helper T cell 17/regulatory T cell in peripheral blood of patients with oral lichen planus[J]. Zhonghua Kou Qiang Yi Xue Za Zhi, 2020, 55(2): 80-85. doi: 10.3760/cma.j.issn.1002-0098. 2020.02.002.
DOI
|
[19] |
Wang H, Bai J, Luo Z, et al. Overexpression and varied clinical significance of Th9 versus Th17 cells in distinct subtypes of oral lichen planus[J]. Arch Oral Biol, 2017, 80: 110-116. doi: 10.1016/j.archoralbio.2017.04.003.
DOI
PMID
|
[20] |
Javvadi LR, Parachuru VP, Milne TJ, et al. Regulatory T-cells and IL17A(+) cells infiltrate oral lichen planus lesions[J]. Pathology, 2016, 48(6): 564-573. doi: 10.1016/j.pathol.2016.06.002.
DOI
URL
|
[21] |
Zhang H, Li F, Cao J, et al. A chimeric antigen receptor with antigen-independent OX40 signaling mediates potent antitumor activity[J]. Sci Transl Med, 2021, 13(578): eaba7308. doi: 10.1126/scitranslmed.aba7308.
DOI
|
[22] |
Lv YW, Chen Y, Lv HT, et al. Kawasaki disease OX40-OX40L axis acts as an upstream regulator of NFAT signaling pathway[J]. Pediatr Res, 2019, 85(6): 835-840. doi: 10.1038/s41390-019-0312-0.
DOI
URL
|
[23] |
Fouladi S, Masjedi M, Ghasemi R, et al. The in vitro impact of glycyrrhizic acid on CD4+ T lymphocytes through OX40 receptor in the patients with allergic rhinitis[J]. Inflammation, 2018, 41(5): 1690-1701. doi: 10.1007/s10753-018-0813-8.
DOI
URL
|
[24] |
Huang L, Wang M, Yan Y, et al. OX40L induces helper T cell differentiation during cell immunity of asthma through PI3K/AKT and P38 MAPK signaling pathway[J]. J Transl Med, 2018, 16(1): 74. doi: 10.1186/s12967-018-1436-4.
DOI
|
[25] |
Wu Q, Tang Y, Hu X, et al. Regulation of Th1/Th2 balance through OX40/OX40L signalling by glycyrrhizic acid in a murine model of asthma[J]. Respirology, 2016, 21(1): 102-111. doi: 10. 1111/resp.12655.
DOI
URL
|
[26] |
Huang L, Zhang X, Wang M, et al. Exosomes from thymic stromal lymphopoietin-activated dendritic cells promote Th2 differentiation through the OX40 ligand[J]. Pathobiology, 2019, 86: 111-117. doi: 10.1159/000493013.
DOI
PMID
|
[27] |
Sitrin J, Suto E, Wuster A, et al. The OX40/OX40 ligand pathway promotes pathogenic Th cell responses, plasmablast accumulation, and lupus nephritis in NZB/W F1 mice[J]. J Immunol, 2017, 199(4): 1238-1249. doi: 10.4049/jimmunol.1700608.
DOI
URL
|
[28] |
Yamaki S, Ine S, Kawabe T, et al. OX40 and IL-7 play synergistic roles in the homeostatic proliferation of effector memory CD4+ T cells[J]. Eur J Immunol, 2014, 44(10): 3015-3025. doi: 10.1002/eji.201444701.
DOI
URL
|
[29] |
Jacquemin C, Augusto JF, Scherlinger M, et al. OX40L/OX40 axis impairs follicular and natural Treg function in human SLE[J]. JCI Insight, 2018, 3(24): e122167. doi: 10.1172/jci.insight.122167.
DOI
|
[30] |
Marshall A, Celentano A, Cirillo N, et al. Immune receptors CD40 and CD86 in oral keratinocytes and implications for oral lichen planus[J]. J Oral Sci, 2017, 59(3): 373-382. doi: 10.2334/josnusd.16-0334.
DOI
PMID
|
[31] |
Costa NL, Gonçalves J, De Lima S, et al. Evaluation of PD-L1, PD-L2, PD-1 and cytotoxic immune response in oral lichen planus[J]. Oral Dis, 2020: 13344. doi: 10.1111/odi.13344.
DOI
|
[32] |
Zhang J, Tan YQ, Wei MH, et al. TLR4-induced B7-H1 on keratinocytes negatively regulates CD4(+) T cells and CD8(+) T cells responses in oral lichen planus[J]. Exp Dermatol, 2017, 26(5): 409-415. doi: 10.1111/exd.13244.
DOI
PMID
|
[33] |
Peng Q, Zhang J, Zhou G. Circulating exosomes regulate T-cell-mediated inflammatory response in oral lichen planus[J]. J Oral Pathol Med, 2019, 48(2): 143-150. doi: 10.1111/jop.12804.
DOI
URL
|