[1] |
Bai YC, Fu F, Xiao ZF, et al. Progress in selective laser melting equipment, related biomedical metallic materials and applications[J]. J Zhejiang Univ-Sc A, 2018, 19(2): 122-136. doi: 10.1631/jzus.A1700482.
DOI
URL
|
[2] |
Wu J, Xie H, Sadr A, et al. Evaluation of internal fit and marginal adaptation of provisional crowns fabricated with three different techniques[J]. Sensors, 2021, 21(3):740. doi: 10.3390/s21030740.
DOI
URL
|
[3] |
Carneiro Pereira AL, Bezerrade Medeiros AK, De Sousa Santos K, et al. Accuracy of CAD-CAM systems for removable partial denture framework fabrication: a systematic review - ScienceDirect[J]. J Prosthet Dent, 2021, 125(2): 241-248. doi: 10.1016/j.prosdent.2020.01.003.
DOI
PMID
|
[4] |
Wang D, Wu S, Yang Y, et al. The effect of a scanning strategy on the residual stress of 316L steel parts fabricated by selective laser melting (SLM)[J]. Mater, 2018, 11(10): 1821. doi: 10.3390/ma11101821.
DOI
|
[5] |
Wang H, Xu JB, Nie Z, et al. Preparation and properties of Co-Cr alloy denture by selective laser melting[J]. mater res express, 2019, 6(2): 026552. doi: 10.1088/2053-1591/aaee5d.
DOI
URL
|
[6] |
Revilla León M, Klemm IM, García-Arranz J, et al. 3D metal printing-additive manufacturing technologies for frameworks of implant-borne fixed dental prosthesis[J]. Eur J Prosthodont Restor Dent 2017, 25(3): 143-147. doi: 10.1922/EJPRD_RevillaLeon05.
DOI
PMID
|
[7] |
Okazaki Y, Ishino A. Microstructures and mechanical properties of laser-sintered commercially pure Ti and Ti-6Al-4V alloy for dental applications[J]. Mater, 2020, 13(3): 609. doi: 10.3390/ma13030609.
DOI
URL
|
[8] |
Stanislava F, Ivo K, Jan P, et al. Influence of sandblasting and acid etching on fatigue properties of ultra-fine grained Ti grade 4 for dental implants[J]. J Mech Behav Biomed Mater, 2020, 111: 104016. doi: 10.1016/j.jmbbm.2020.104016.
DOI
URL
|
[9] |
Dong YP, Tang JC, Wang DW, et al. Additive manufacturing of pure Ti with superior mechanical performance, low cost, and biocompatibility for potential replacement of Ti-6Al-4V - ScienceDirect[J]. Mater Des, 2020, 196. doi: 10.1016/j.matdes.2020.109142.
DOI
|
[10] |
Hou Y, Liu B, Liu Y, et al. Ultra-low cost Ti powder for selective laser melting additive manufacturing and superior mechanical properties associated[J]. Opto-Electron Adv. 2019, 2(5):13-20. doi: 10.29026/oea.2019.180028.
DOI
|
[11] |
夏岩, 聂真, 袁剑, 等. 选区激光熔化钴铬合金工艺与性能的研究[J]. 应用激光, 2018, 38(6): 902-907. doi: 10.14128/j.cnki.al.20183806.902.
DOI
|
|
Xia Y, Nei Z, Yuan J, et al. Process and properties of selective laser melting cobalt chromium alloy[J]. Appl Laser, 2018, 38(6): 902-907. doi: 10.14128/j.cnki.al.20183806.902.
DOI
|
[12] |
Okazaki Y. Development of low-cost manufacturing process and effects of adding small amounts of Ta, O, and N on the physical and mechanical properties of highly biocompatible Ti alloys. Mater. Trans. 2019, 60,1769-1778. doi: 10.2320/matertrans.ME201917.
DOI
URL
|
[13] |
孙洪吉. 激光增材制造纯钛样件中残余应力、组织及力学性能演变及其影响因素[D]. 长沙: 湘潭大学, 2019.
|
|
Sun HJ. Evolution of residual stress, microstructure and mechanical properties of pure titanium samples manufactured by laser additive and its influencing factors[D]. Changsha: Xiangtan University, 2019.
|
[14] |
Iseri U, Ozkurt Z, Kazazoglu E. Shear bond strengths of veneering porcelain to cast, machined and laser-sintered titanium[J]. Dent Mater J, 2011, 30(3): 274-280. doi: 10.4012/dmj.2010-101
DOI
PMID
|
[15] |
李瑶. 3D打印技术制作烤瓷冠金瓷结合性能的实验研究[D]. 贵州: 西南医科大学, 2017.
|
|
Li Y. Experimental study on bonding properties of 3D printing porcelain crown[D]. Guizhou: Southwest Medical University, 2017.
|
[16] |
Antanasova M, Kocjan A, Kovač J, et al. Influence of thermo-mechanical cycling on porcelain bonding to cobalt-chromium and titanium dental alloys fabricated by casting, milling, and selective laser melting[J]. J Prosthodont Res. 2018, 62(2): 184-194. doi: 10.1016/j.jpor.2017.08.007.
DOI
PMID
|
[17] |
Li KC, Tran L, Prior DJ, et al. Porcelain bonding to novel Co-Cr alloys:Influence of interfacial reactions on phase stability,plasticity and adhesion[J]. Dent Mater, 2016, 32(12): 1504-1512. doi: 10.1016/j.dental.2016.09.008.
DOI
URL
|
[18] |
Tulga A. Effect of annealing procedure on the bonding of ceramic to cobalt-chromium alloys fabricated by rapid prototyping[J]. J Prosthet Dent, 2017, 119(4): 643-649. doi: 10.1016/j.prosdent.2017.05.009.
DOI
URL
|
[19] |
Chakmakchi M, Eliades G, Zinelis S. Bonding agents of low fusing cpTi porcelains: elemental and morphological charaterization[J]. J Prosthodont Res, 2009, 53(4): 166-171. doi: 10.1016/j.jpor.2009.03.003.
DOI
PMID
|
[20] |
Zhou Y, Wen SF, Song B, et al. A novel titanium alloy manufactured by selective laser melting: microstructure, high temperature oxidation resistance[J]. Mater Des, 2016, 89:1199-1204. doi: 10.1016/j.matdes.2015.10.092.
DOI
URL
|