口腔疾病防治, 2021, 29(11): 787-792 DOI: 10.12016/j.issn.2096-1456.2021.11.011

综述

雌激素对牙周膜细胞修复重建牙周组织调节机制的研究进展

黎祺,1, 王贺2, 黄紫君1, 韩倩倩,3

1.肇庆医学高等专科学校口腔医学院 国家基层医疗服务应用技术协同创新中心,广东 肇庆(526020)

2.南方医科大学口腔医院牙体牙髓病科,广东 广州(510280)

3.南方医科大学口腔医院牙周病科,广东 广州(510280)

Research progress on the regulatory mechanism of estrogen in periodontal ligament cells repair and the reconstruction of periodontal tissue

LI Qi,1, WANG He2, HUANG Zijun1, HAN Qianqian,3

1. Stomatological College of Zhaoqing Medical College, National Application Technology Collaborative Innovation Center of Primary Medical Service, Zhaoqing 526020, China

2. Department of Endodontics Periodontal, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China

3. Department of Periodontal, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China

通讯作者: 韩倩倩,副主任医师,博士,Email:hanqianqian04@163.com,Tel:86-18520392936

责任编辑: 罗燕鸿

收稿日期: 2021-03-17   修回日期: 2021-04-3   网络出版日期: 2021-11-20

基金资助: 国家自然科学基金项目.  82000994
广东省医学科研基金项目.  A2018066

Corresponding authors: HAN Qianqian, Email:hanqianqian04@163.com, Tel: 86-18520392936

Received: 2021-03-17   Revised: 2021-04-3   Online: 2021-11-20

Fund supported: National Natural Science Foundation of China.  82000994
Guangdong Medical Research Foundation.  A2018066

作者简介 About authors

黎祺,副教授,硕士,Email:Licy13@163.com

摘要

牙周组织再生修复是牙周病治疗的热点和难点,而牙周膜细胞的增殖、分化、迁移、黏附及与其胞外基质蛋白之间互相调节的动态关系,是牙周组织形态改建、功能维持和组织修复的基础。本文对雌激素调控下牙周膜细胞修复重建牙周组织的机制作一综述,为外源性雌激素替代治疗牙周炎和促进牙周组织修复重建的后续研究提供依据。在一定浓度的雌激素调控下,牙周膜干细胞(periodontal ligament stem cells,PDLSCs)、骨髓间充质干细胞(bone mesenchymal stem cells,BMSCs)向牙周膜细胞的增殖、分化能力增强,同时PDLSCs、BMSCs、牙周膜成纤维细胞(human periodontal ligament fibroblasts,HPLFs)、成骨细胞、成牙骨质细胞合成并往胞外基质中分泌胶原蛋白I型(collagen I,COLI)、骨桥蛋白(osteopontin,OPN)、骨涎蛋白(bone sialoprotein,BSP)、骨钙蛋白(osteocalcin,OCN)增多,与胞外基质中的纤维粘连蛋白(fibronectin,FN)、牙骨质附着蛋白(cementum attachment protein,CAP)等互相链接、结合形成多种链合物并相互调节,促进牙周膜细胞生长、迁移、黏附和纤维化,使牙周膜胶原纤维骨架修复并与新生牙骨质和固有牙槽骨重新黏附。

关键词: 雌激素 ; 牙周膜干细胞 ; 牙周膜成纤维细胞 ; 成牙骨质细胞 ; 成骨细胞 ; 破骨细胞 ; 骨髓间充质干细胞 ; 胶原蛋白Ⅰ型 ; 骨桥蛋白 ; 骨涎蛋白 ; 骨钙蛋白

Abstract

Periodontium regeneration and repair is a controversial and difficult point in the treatment of periodontosis. The proliferation, differentiation, migration and adhesion of periodontal ligament cells and the dynamic relationship between periodontal ligament cells and their extracellular matrix proteins are the basis of periodontium morphological reconstruction, functional maintenance and tissue repair. This article reviews the mechanism of estrogen-regulated periodontal membrane fine repair and periodontal tissue reconstruction to provide the basis for follow-up research on the treatment of periodontitis and the promotion of periodontal tissue repair and reconstruction by exogenous estrogen-mediated periodontal membranes. Under the regulation of certain concentrations of estrogen, the proliferation and differentiation ability of periodontal ligament stem cells (PDLSCs) and bone mesenchymal stem cells (BMSCs) to other periodontal ligament cells were enhanced. At the same time, PDLSCs, BMSCs, human periodontal ligament fibroblasts (HPLFSs), osteoblasts and cementoblasts synthesized and secreted collagen I (COLI), osteopontin (OPN), bone sialoprotein (BSP) and osteocalcin (OCN) into the extracellular matrix. They interact with fibronectin (FN) and cementum attachment protein (CAP) in the extracellular matrix to form a variety of chain complexes and regulate each other, thus promoting the growth, migration, adhesion and fibrosis of periodontal ligament cells, repairing the collagen fiber skeleton of the periodontal ligament and adhering the two ends to the new cementum and the inherent alveolar bone.

Keywords: estrogen ; periodontal ligament stem cells ; periodontal ligament fibroblasts ; cementoblasts ; osteoblasts ; osteoclasts ; bone mesenchymal stem cells ; collagen I ; osteopontin ; bone sialoprotein ; osteocalcin

PDF (1214KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

黎祺, 王贺, 黄紫君, 韩倩倩. 雌激素对牙周膜细胞修复重建牙周组织调节机制的研究进展. 口腔疾病防治[J], 2021, 29(11): 787-792 DOI:10.12016/j.issn.2096-1456.2021.11.011

LI Qi, WANG He, HUANG Zijun, HAN Qianqian. Research progress on the regulatory mechanism of estrogen in periodontal ligament cells repair and the reconstruction of periodontal tissue. Journal of Prevention and Treatment For Stomatological Diseases[J], 2021, 29(11): 787-792 DOI:10.12016/j.issn.2096-1456.2021.11.011

开放科学(资源服务)标识码(OSID)

牙周病是口腔最常见的疾病之一,特点是牙周组织破坏、吸收、牙齿松动、脱落,牙周组织再生修复是牙周病治疗的热点和难点[1]。牙周组织由牙周膜、牙槽骨、牙骨质及牙龈组成,牙周膜纤维束的两端分别埋入牙根表面的牙骨质和牙槽窝表面的固有牙槽骨,使牙体稳固在牙槽窝中。牙周组织在形态改建和组织修复的过程中,牙槽骨会不断吸收和重建,新的牙周膜纤维也会重新附着在牙根表面,形成继发性牙骨质[2],这个过程主要依赖牙周膜细胞及其胞外基质蛋白的生物学行为,并可受到雌激素的调控和影响。本文就雌激素对牙周膜细胞增殖、分化、合成分泌胞外基质蛋白的调控机制,以及雌激素调控下牙周膜细胞及其胞外基质主要蛋白修复重建牙周组织的机制进行综述。

1 牙周膜细胞及其胞外基质

牙周膜细胞包括牙周膜干细胞(periodontal ligament stem cells,PDLSCs)、牙周膜成纤维细胞(human periodontal ligament fibroblasts,HPLFs)、成牙骨质细胞、成骨细胞、破骨细胞、骨髓间充质干细胞(bone mesenchymal stem cells,BMSCs)。其中HPLFs是牙周膜最主要的细胞,具有独特且高效的合成和分解胞外基质中胶原蛋白的能力,对于维持牙周组织正常改建和损伤后修复有重要意义[3]。而PDLSCs的重要潜能是向HPLFs、成牙骨质细胞、成骨细胞和破骨细胞分化[4],BMSCs也是具有多向分化潜能的干细胞,PDLSCs和BMSCs是雌激素调控牙周组织再生修复的重要上游细胞。

牙周膜细胞的胞外基质是牙周膜细胞合成和分泌的,由结构蛋白、蛋白聚糖、粘连糖蛋白和水组成的复杂的网架混合结构[5]。细胞可通过改变胞外基质各种蛋白和反应因子的合成、降解和组织结构来重建胞外基质环境,胞外基质环境变化又对细胞行为产生重要影响。因此,牙周膜细胞的增殖、分化等生物学行为与其胞外基质蛋白、反应因子之间互相调节,是牙周组织形态改建、组织修复和功能维持的基础,而这些生物学行为可受雌激素调控。

2 雌激素调控牙周膜细胞增殖和分化

雌激素是一种生物学活性广泛的甾体类固醇激素,不仅对生殖系统、骨骼、心血管系统的功能有调节作用,还影响牙周组织的生长发育,人体中雌激素包括雌二醇、雌三醇和雌酮,其中雌二醇(17β-estradiol,E2)发挥主要作用[6]。临床研究证明,绝经后骨质疏松女性使用外源性雌激素治疗,可使牙槽骨吸收减缓,牙周附着丧失和牙龈出血减轻[7]

雌激素主要是通过牙周膜细胞的雌激素受体(estradiol receptor,ER)对细胞的增殖和分化起调控作用。人体HPLFs、PDLSCs、BMSCs、成牙骨质细胞、成骨细胞和破骨细胞的细胞膜上均含有ERα和ERβ[3,4]。两型ER功能不同,在不同的组织和细胞中表达的浓度也不一样,如ERβ在HPLFs中占主导地位,而在PDLSCs中ERα的表达高于ERβ,两型ER可以感受人体中雌激素水平的变化并做出相应的反应[3]

在细胞增殖和分化方面,雌激素与PDLSCs、BMSCs的细胞膜ERα和ERβ结合后,刺激雌激素靶基因启动子的DNA序列——雌激素应答元件调控细胞内的信号表达,促进细胞增殖并向HPLFs、成骨细胞和成牙骨质细胞分化[4,8-10]。PDLSCs、BMSCs的增殖分化机制含有诸多通路,其中以Wnt/β-catenin通路的研究最多,国内外学者研究发现雌激素调控下,PDLSCs、BMSCs细胞的Wnt/β-catenin通路被激活,糖原合成酶激酶-3β被磷酸化而丧失活性,β-catenin蛋白在细胞内聚集,并转移至胞核内与转录因子/淋巴增强因子结合,调节下游靶基因细胞周期素D1的表达,从而调控干细胞的增殖、分化、凋亡等代谢活动[8,10-11]。雌激素还可通过调节Notch信号通路促进成牙骨质细胞增殖、分化、矿化和牙骨质形成[10]

核因子κB受体活化因子配体(receptor activator of nuclear factor-κB ligand,RANKL)是诱导破骨细胞分化、生长的一种跨膜蛋白,主要由成骨细胞合成和分泌[12]。雌激素可通过ERα诱导成骨细胞生成护骨素,护骨素与RANKL结合后抑制破骨细胞形成、分化和激活[12]。而雌激素缺乏则上调破骨细胞RANKL的表达,抑制骨分化和Notch信号通路,诱导破骨细胞形成和溶骨活性提高[13,14]。雌激素还可抑制成骨细胞分泌白介素1、白介素6、肿瘤坏死因子α等破骨细胞激活因子,诱导破骨细胞凋亡,从而抑制骨吸收[9,12]

3 雌激素调控牙周膜细胞合成分泌蛋白

大量研究发现,雌激素在促进PDLSCs、BMSCs向其他牙周膜细胞分化和增殖的同时,还能促进PDLSCs、BMSCs、HPLFs、成骨细胞、成牙骨质细胞合成,并往胞外基质中分泌胶原蛋白I型(collagen I,COLI)、骨桥蛋白(osteopontin,OPN)、骨涎蛋白(bone sialoprotein,BSP)、骨钙蛋白(osteocalcin,OCN)等[4,8-11],它们是支持、修复、重建牙周组织结构和调节牙周膜细胞增殖、分化、迁移、黏附、功能表达等生物学过程的重要因子[15,16,17,18,19,20]。动物实验研究发现,浓度为10-7 mol/L的E2能使PDLSCs、BMSCs等牙周膜细胞的COLI、OPN、BSP、OCN合成增多,提高细胞成骨分化和胞外基质的沉积、矿化能力[9,11]

HPLFs合成COLI并分泌到胞外基质中与蛋白酶反应后自我组装成胶原纤维,是牙周膜纤维的主要组成部分[2,18]。COLI也分布在牙槽骨板层骨小梁和新形成编织骨的网状组织中,是骨矿化的主要基质,为胞外基质的沉矿化积提供网状结构支架[21]。E2通过调控BMSCs、HPLFs的ERα、ERβ表达影响COLI的合成,加强ERβ的转录和表达可增加细胞COLI mRNA及蛋白的表达[4],提高COLI的合成与活性,而ERα的表达增强反而降低COLI合成[3]

HPLFs、BMSCs、骨细胞、成骨细胞、成牙骨质细胞、破骨细胞均可合成分泌OPN。E2通过减少牙周膜细胞内的细胞因子信号抑制因子-2介导的反馈而扩增生长激素信号途径,激活OPN基因启动子区域的SFl反应单元序列(SFl-responsive element, SFRE)而诱导OPN mRNA的转录与表达[22]。OPN是一个含300个氨基酸残基的分泌型粘性糖蛋白,能与羟基磷灰石、COLI结合,参与骨基质矿化和吸收、炎症反应和创面愈合[23]

牙周膜细胞成骨诱导末期,BSP合成和分泌增多,E2通过成骨细胞和成牙骨质细胞的ERα刺激BSP转录启动元件环腺苷酸反应组件(cAMP response element,CRE)和激活蛋白因子1(the activator protein 1,AP-1)元件的活动,提高成骨细胞中BSP mRNA的基因转录和表达水平[24]。BSP是一种由317个氨基酸组成的磷酸化非胶原糖蛋白,可调控HPLFs、成牙骨质细胞、成骨细胞与羟基磷灰石结合,诱导羟基磷灰石聚集成核;另一方面BSP又可吸附于羟基磷灰石晶体表面抑制晶体生长,在骨组织钙化中表现双重调节作用[23]

OCN的表达水平也通常在成骨晚期升高[9,21]。OCN又称骨钙素和骨R-羟基谷氨酸蛋白,是一种由49个氨基酸组成的维生素K依赖性蛋白质,可由成骨细胞和成牙骨质细胞合成,并将其作为羟基磷灰石晶体储存在骨矿物基质中,是骨形成标志[18]。OCN启动子中有3个ERα反应元件,该部位与E2结合形成激素-受体复合物后,与过氧化物酶体增殖物激活受体γ辅激活物-1α协同作用提高OCN启动子的活性,激活OCN的基因表达[25]。OCN能促进HPLFs和成骨细胞的矿化,启动和参与骨的改建[21]

4 雌激素调控下牙周膜细胞及其胞外基质主要蛋白修复重建牙周组织的机制

笔者在整合、分析、归纳国内外文献基础上,建立了雌激素调控下牙周膜细胞及其胞外基质主要蛋白修复重建牙周组织的机制模型(图1)。在一定浓度的雌激素调控下,PDLSCs、BMSCs增殖、分化能力增强,牙周膜细胞数量增多,合成分泌COLI、OPN、BSP、OCN增多,与胞外基质中的纤维粘连蛋白(fibronectin,FN)、牙骨质附着蛋白(cementum attachment protein,CAP)等互相链接、结合形成多种链合物并相互调节,进而促进牙周膜细胞生长、迁移、黏附和纤维化,使牙周膜胶原纤维骨架修复并与新生牙骨质和固有牙槽骨重新黏附。

图1

图1   雌激素调控下牙周膜细胞及其胞外基质主要蛋白修复重建牙周组织的机制模型

Figure 1   Mechanistic model of the periodontal ligament cells and extracellular matrix proteins in periodontal tissue repair and reconstruction under estrogen regulation

BMSCs: bone mesenchymal stem cells; PDLSCs: periodontal ligament stem cells; HPLFs: human periodontal ligament fibroblasts; OCN: osteocalcin; BSP: bone sialoprotein; OPN: osteopontin; COLI: collagen I; FN: fibronectin; CAP: cementum attachment protein


4.1 牙周膜胶原纤维骨架的修复

HPLFs在一定浓度的雌激素调控下分泌胶原增多,其中以COLI最明显,是成骨分化的早、中期标志物[9]。COLI和胞外基质中的FN相互诱导、结合、沉积形成COLI-FN链合物,构成结构稳定的胶原网络。FN是存在于各种动物的血液、体液和组织中,分子量约为450 KD的黏附性非胶原糖蛋白,是牙周细胞外基质中细胞间、细胞与基质之间的重要黏附因子[20]。FN是由两个亚基组成的二聚体,每个亚基上有与胶原、细胞表面受体高亲和结合的位点[20],FN通过自身结构的精氨酸-甘氨酸-天冬氨酸三肽序列(arginine-glycine-aspatic acid, RGD)与HPLFs的细胞膜表面一类整合素结合[26],使更多的HPLFs识别、迁移和附着于COLI-FN网状链合物上,HPLFs持续不断地分泌胶原对牙周膜胶原纤维进行改建,从而修复胶原纤维骨架,并作为胞外基质蛋白沉积、链接和矿化的底物基础[21,27]。雌激素缺乏可使胶原纤维成分减少并导致排列结构紊乱[4]

4.2 牙周膜胶原纤维与新生牙骨质重新黏附

CAP是一种相对分子质量为55 000的蛋白,是牙骨质再生的重要趋化因子,参与牙周新附着的形成[20]。COLI不与CAP直接结合,但FN对CAP有极强的亲和力,可与FN结合形成FN-CAP链合物,COLI与FN结合形成COLI-FN链合物后,FN作为中介物调控CAP与COLI-FN链合物,再结合形成COLI-FN-CAP链合物,使CAP牢固结合到牙周膜纤维组织上[28]。CAP可选择性结合HPLFs、PDLSCs等牙周膜细胞,使这些细胞在牙根表面迁移和黏附,并分化为成牙骨质细胞,同时CAP对羟基磷灰石有高亲和力,促进成牙骨细胞外基质羟基磷灰石晶体形成、矿化[29]。因此,COLI-FN-CAP链合物将牙周韧带纤维的一端在新生牙骨质中重新黏附。此外,牙周膜细胞外基质中的牙骨质蛋白1(cementum protein 1,CEMP1)和釉基质蛋白(enamel matrix proteins,EMPs)也可诱导PDLSCs增殖,并向成牙骨质细胞分化,促进牙骨质羟基磷灰石晶体在有序成核方面发挥调节作用[20]

4.3 牙周膜胶原纤维埋入重建的固有牙槽骨

牙周膜细胞外基质中的BSP和OPN主要由BMSCs、成骨细胞合成分泌,BSP和OPN在胶原上有特异的定向结合位点,多位于胶原纤维网靠近固有牙槽骨的“孔区”[30]。雌激素调控下OPN在成骨分化的早期表达增多,OPN与COLI、FN均可结合,三者形成OPN-COLI-FN链合物,并通过OPN端的RGD序列吸引更多的成骨细胞黏附[31]。而BSP 是成熟骨标志性蛋白,BSP与COLI、FN结合形成BSP-COLI-FN链合物[22,23],通过BSP端的RGD序列与更多的HPLFs、成骨细胞黏附,大量成骨细胞被吸引,定向移行至“孔区”后,分泌骨基质并矿化,最终将牙周膜胶原纤维靠近牙槽骨的一端埋入重建的固有牙槽骨中。

在牙槽骨和牙骨质基质矿化的过程中,旧骨破坏吸收后释放的OCN在维生素K依赖转录后形成羧基谷氨酸蛋白,部分氨基酸残基羧化凸向同一方向排列形成一个紧密的α-螺旋结构,与羟基磷灰石具有高亲和力[25]。OPN和BSP也作为重要调节因子调节骨基质羟基磷灰石核晶的启动、形成和矿化[32,33],OPN和BSP还能够结合破骨细胞膜αvβ3整合素,抑制破骨细胞激活因子生成,降低骨吸收[23]

5 小结

综上所述,一定浓度的雌激素可促进牙周膜细胞增殖、分化、基质蛋白合成分泌增加和活性增强,使牙周膜纤维修复并重新黏附在新生的牙骨质和重建的牙槽骨中。但目前雌激素对牙周膜细胞外基质中FN、CAP等调控机制尚不明确,牙周膜细胞增殖和成骨分化的路径和调节因子还待不断被发现和验证。

【Author contributions】 Li Q and Huang ZJ wrote the article, Wang H and Han QQ revised the article. All authors read and approved the final manuscript as submitted.

参考文献

Ouchi T, Nakagawa T.

Mesenchymal stem cell-based tissue regeneration therapies for periodontitis

[J]. Regen Ther, 2020, 14(14):72-78. doi: 10.1016/j.reth.2019.12.011.

URL     [本文引用: 1]

Hirashima S, Kanazawa T, Ohta K, et al.

Three-dimensional ultrastructural imaging and quantitative analysis of the periodontal ligament

[J]. Anat Sci Int, 2020, 95(1):1-11. doi: 10.1007/s12565-019-00502-5.

DOI      URL     PMID      [本文引用: 2]

The periodontal ligament (PDL) is a unique connective tissue mainly comprising collagen fiber bundles and cells between the roots of teeth and inner walls of the alveolar-bone socket. PDL fiber bundles are arrayed between teeth and bone, with both ends embedded in the cementum or alveolar bone as Sharpey's fiber. These bundles, synthesized by PDL fibroblasts (PDLFs), form several distinct groups within the PDL which has important functions besides tooth anchoring including tooth nutrition, proprioception, sensory detection, homoeostasis, and repair of damaged tissue. However, little is known about how the regular-PDL fiber bundle arrays are formed, maintained, and remodeled over large distances from cementum to alveolar bone. Recently, novel instruments and 3D-imaging methods have been developed that have been applied to the investigation of hard tissues including the PDL. Work from our laboratory has revealed the three-dimensional (3D) ultrastructure of PDLFs and PDL collagen bundles by focused ion beam/scanning electron microscope tomography. We have shown that PDLFs have a flat shape with long processes or a wing-like shape, while PDL bundles are a multiple-branched structure wrapped in thin sheets of PDLF cytoplasm. Furthermore, PDLFs form an extensive cellular network between the cementum and alveolar bone. The PDL cellular network is presumed to synchronize PDL fiber bundles and regulate arrays of PDL fiber bundles via gap junctions. In this review, we summarize and discuss our current 3D-histomorphometric studies of the PDL at the mesoscale level.

Quast A, Martian V, Bohnsack A, et al.

Donor variation and sex hormone receptors in periodontal ligament cells

[J]. Arch Oral Biol, 2021, 122:105026. doi: 10.1016/j.archoralbio.2020.105026.

DOI      URL     [本文引用: 4]

Ou Q, Wang X, Wang Y, et al.

Oestrogen retains human periodontal ligament stem cells stemness in long-term culture

[J]. Cell Prolif, 2018, 51(2):e12396. doi: 10.1111/cpr.12396.

DOI      URL     [本文引用: 6]

Nakamura N, Ito A, Kimura T, et al.

Extracellular matrix induces periodontal ligament reconstruction in vivo

[J]. Int J Mol Sci, 2019, 20(13):3277. doi: 10.3390/ijms20133277.

DOI      URL     [本文引用: 1]

Nayak PA, Nayak UA, Mythili R.

Association between periodontal disease and osteoporosis among post-menopausal women

[J]. AJPRHC, 2020, 12(1):1-9. doi: 10.18311/ajprhc/2020/25109.

URL     [本文引用: 1]

Chaves JDP, Figueredo TFM, Warnavin SVSC, et al.

Sex hormone replacement therapy in periodontology-a systematic review

[J]. Oral Dis, 2020, 26(2):270-284. doi: 10.1111/odi.13059.

DOI      URL     [本文引用: 1]

Jiang B, Xu J, Zhou Y, et al.

Estrogen enhances osteogenic differentiation of human periodontal ligament stem cells by activating the Wnt/β-Catenin signaling pathway

[J]. J Craniofac Surg, 2020, 31(2):583-587. doi: 10.1097/SCS.0000000000006226.

DOI      URL     PMID      [本文引用: 3]

This study was designed to investigate the role of the Wnt/β-catenin signaling pathway in estrogen-enhanced osteogenic differentiation of human peridontal ligament stem cells (hPLSCs). The limiting dilution technique was used for cloning and purification of hPLSCs. Flow cytometric analysis of STRO-1, CD146, and CD45 was conducted to identify hPLSCs. The P3 hPDLSCs were divided into 4 groups: Control, 10M E2, 10M E2+100 ng/mL Wnt3a, 10M E2+5 × 10M Xav939. After 7 days of osteogenic induction, qRT-PCR was used to detect the mRNA expression of β-catenin, CyclinD1, alkaline phosphatase, Runx2, and OCN; Western blot was used to detect the protein expression of β-catenin, GSK3β, P-GSK3β, CyclinD1, Runx2, and OCN; After 1, 3, 5, 7 days of osteogenic induction, the activity of alkaline phosphatase was detected. The authors' results showed that E2 was able to enhance the osteogenic differentiation of hPDLSCs and Wnt/β-catenin signaling pathway was involved. Wnt3a activated the signaling pathway of Wnt/β-catenin and further enhanced the osteogenesis of hPDLSCs. Xav939 inhibited the Wnt/β-catenin signaling pathway in estrogen-mediated environment, but did not obviously inhibit the osteogenic differentiation of hPDLSCs. E2 enhanced osteogenic differentiation of hPDLSCs through the activation of the Wnt/β-catenin signaling pathway.

Zhou S, Zilberman Y, Wassermann K, et al.

Estrogen modulates estrogen receptor alpha and beta expression, osteogenic activity, and apoptosis in mesenchymal stem cells (MSCs) of osteoporotic mice

[J]. J Cell Biochem Suppl, 2001,Suppl 36:144-155. doi: 10.1002/jcb.1096.

URL     [本文引用: 4]

Liao J, Zhou Z, Huang L, et al.

17β-estradiol regulates the differentiation of cementoblasts via Notch signaling cascade

[J]. Biochem Biophys Res Commun, 2016, 477(1):109-114. doi: 10.1016/j.bbrc.2016.06.028.

DOI      URL     [本文引用: 3]

毛杰, 周翊飞, 吴晓玲, .

雌激素介导下Wnt/β-catenin信号通路调控人牙周膜干细胞的成骨分化

[J]. 中国组织工程研究, 2018, 22(13):2087-2092. doi: 10.3969/j.issn.2095-4344.0498.

URL     [本文引用: 3]

Mao J, Zhou XF, Wu XL, et al.

Estrogen regulates osteogenic differentiation of human periodontal ligament stem cells via Wnt/beta-catenin signaling pathway

[J]. J Clin Rehabil Tis Eng Res, 2018, 22(13):2087-2092. doi: 10.3969/j.issn.2095-4344.0498.

URL     [本文引用: 3]

Fujiwara Y, Piemontese M, Liu Y, et al.

RANKL (receptor activator of NFκB ligand) produced by osteocytes is required for the increase in B cells and bone loss caused by estrogen deficiency in mice

[J]. J Biol Chem, 2016, 291(48):24838-24850. doi: 10.1074/jbc.M116.742452.

URL     PMID      [本文引用: 3]

The cytokine receptor activator of NFκB ligand (RANKL) produced by osteocytes is essential for osteoclast formation in cancellous bone under physiological conditions, and RANKL production by B lymphocytes is required for the bone loss caused by estrogen deficiency. Here, we examined whether RANKL produced by osteocytes is also required for the bone loss caused by estrogen deficiency. Mice lacking RANKL in osteocytes were protected from the increase in osteoclast number and the bone loss caused by ovariectomy. Moreover, these mice did not exhibit the increase in bone marrow B lymphocytes caused by ovariectomy that occurred in control littermates. Deletion of estrogen receptor α from B cells did not alter B cell number or bone mass and did not alter the response to ovariectomy. In addition, lineage-tracing studies demonstrated that B cells do not act as osteoclast progenitors in estrogen-replete or estrogen-deficient mice. Taken together, these results demonstrate that RANKL expressed by osteocytes is required for the bone loss as well as the increase in B cell number caused by estrogen deficiency. Moreover, they suggest that estrogen control of B cell number is indirect via osteocytes and that the increase in bone marrow B cells may be a necessary component of the cascade of events that lead to cancellous bone loss during estrogen deficiency. However, the role of B cells is not to act as osteoclast progenitors but may be to act as osteoclast support cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

Streicher C, Heyny A, Andrukhova O, et al.

Estrogen regulates bone turnover by targeting RANKL expression in bone lining cells

[J]. Sci Rep, 2017, 7(1):6460. doi: 10.1038/s41598-017-06614-0.

DOI      URL     PMID      [本文引用: 1]

Estrogen is critical for skeletal homeostasis and regulates bone remodeling, in part, by modulating the expression of receptor activator of NF-kappa B ligand (RANKL), an essential cytokine for bone resorption by osteoclasts. RANKL can be produced by a variety of hematopoietic (e.g. T and B-cell) and mesenchymal (osteoblast lineage, chondrocyte) cell types. The cellular mechanisms by which estrogen acts on bone are still a matter of controversy. By using murine reconstitution models that allow for selective deletion of estrogen receptor-alpha (ER alpha) or selective inhibition of RANKL in hematopoietic vs. mesenchymal cells, in conjunction with in situ expression profiling in bone cells, we identified bone lining cells as important gatekeepers of estrogen-controlled bone resorption. Our data indicate that the increase in bone resorption observed in states of estrogen deficiency in mice is mainly caused by lack of ER alpha-mediated suppression of RANKL expression in bone lining cells.

Ma Y, Li SH, Ding XX, et al.

Effects of tumor necrosis factor-α on osteogenic differentiation and Notch signaling pathway in human periodontal ligament stem cells

[J]. West Chin J Stomatol, 2018, 36(2):184-189. doi: 10.7518/hxkq.2018.02.013.

URL     [本文引用: 1]

Li J, Wang Z, Huang X, et al.

Dynamic proteomic profiling of human periodontal ligament stem cells during osteogenic differentiation

[J]. Stem Cell Res Ther, 2021, 12(1):98. doi: 10.1186/s13287-020-02123-6.

DOI      URL     [本文引用: 1]

Liu J, Zhao Z, Ruan J, et al.

Stem cells in the periodontal ligament differentiated into osteogenic, fibrogenic and cementogenic lineages for the regeneration of the periodontal complex

[J]. J Dent, 2020, 92:103259. doi: 10.1016/j.jdent.2019.103259.

DOI      URL     [本文引用: 1]

Han NY, Hong JY, Park JM, et al.

Label-free quantitative proteomic analysis of human periodontal ligament stem cells by high-resolution mass spectrometry

[J]. J Periodontal Res, 2019, 54(1):53-62. doi: 10.1111/jre.12604.

DOI      URL     [本文引用: 1]

Giovani PA, Martins L, Salmon CR, et al.

Comparative proteomic analysis of dental cementum from deciduous and permanent teeth

[J]. J Periodontal Res, 2021, 56(1):173-185. doi: 10.1111/jre.12808.

DOI      URL     [本文引用: 3]

Salmon CR, Giorgetti APO, Paes Leme AF, et al.

Microproteome of dentoalveolar tissues

[J]. Bone, 2017, 101(101):219-229. doi: 10.1016/j.bone.2017.05.014.

DOI      URL     [本文引用: 1]

吴玉铭, 骆凯.

牙骨质特异性蛋白研究进展

[J]. 口腔疾病防治, 2018, 26(4):263-267. doi: 10.12016/j.issn.2096-1456.2018.04.013.

URL     [本文引用: 5]

Wu YM, Luo K.

The research progress of cementum specific proteins

[J]. J Prev Treat Stomatol Dis, 2018, 26(4):263-267. doi: 10.12016/j.issn.2096-1456.2018.04.013.

URL     [本文引用: 5]

Hudson DM, Garibov M, Dixon DR, et al.

Distinct post-translational features of type I collagen are conserved in mouse and human periodontal ligament

[J]. J Periodontal Res, 2017, 52(6):1042-1049. doi: 10.1111/jre.12475.

DOI      URL     PMID      [本文引用: 4]

Specifics of the biochemical pathways that modulate collagen cross-links in the periodontal ligament (PDL) are not fully defined. Better knowledge of the collagen post-translational modifications that give PDL its distinct tissue properties is needed to understand the pathogenic mechanisms of human PDL destruction in periodontal disease. In this study, the post-translational phenotypes of human and mouse PDL type I collagen were surveyed using mass spectrometry. PDL is a highly specialized connective tissue that joins tooth cementum to alveolar bone. The main function of the PDL is to support the tooth within the alveolar bone while under occlusal load after tooth eruption. Almost half of the adult population in the USA has periodontal disease resulting from inflammatory destruction of the PDL, leading to tooth loss. Interestingly, PDL is unique from other ligamentous connective tissues as it has a high rate of turnover. Rapid turnover is believed to be an important characteristic for this specialized ligament to function within the oral-microbial environment. Like other ligaments, PDL is composed predominantly of type I collagen. Collagen synthesis is a complex process with multiple steps and numerous post-translational modifications including hydroxylation, glycosylation and cross-linking. The chemistry, placement and quantity of intermolecular cross-links are believed to be important regulators of tissue-specific structural and mechanical properties of collagens. Type I collagen was isolated from several mouse and human tissues, including PDL, and analyzed by mass spectrometry for post-translational variances. The collagen telopeptide cross-linking lysines of PDL were found to be partially hydroxylated in human and mouse, as well as in other types of ligament. However, the degree of hydroxylation and glycosylation at the helical Lys87 cross-linking residue varied across species and between ligaments. These data suggest that different types of ligament collagen, notably PDL, appear to have evolved distinctive lysine/hydroxylysine cross-linking variations. Another distinguishing feature of PDL collagen is that, unlike other ligaments, it lacks any of the known prolyl 3-hydroxylase 2-catalyzed 3-hydroxyproline site modifications that characterize tendon and ligament collagens. This gives PDL a novel modification profile, with hybrid features of both ligament and skin collagens. This distinctive post-translational phenotype may be relevant for understanding why some individuals are at risk of rapid PDL destruction in periodontal disease and warrants further investigation. In addition, developing a murine model for studying PDL collagen may be useful for exploring potential clinical strategies for promoting PDL regeneration. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Bolamperti S, Mrak E, Moro G, et al.

17β-Estradiol positively modulates growth hormone signaling through the reduction of SOCS2 negative feedback in human osteoblasts

[J]. Bone, 2013, 55(1):84-92. doi: 10.1016/j.bone.2013.03.016.

DOI      URL     PMID      [本文引用: 2]

Recent evidence demonstrated an interplay between estrogens and growth hormone (GH) at cellular level. To investigate the possible mechanism/s involved, we studied the effect of 17β-estradiol (E2) on GH signaling pathways in primary culture of human osteoblasts (hOBs). Exposure of hOBs to E2 (10(-8) M) 60 min before GH (5 ng/ml) significantly increased phosphorylated STAT5 (P-STAT5) levels compared with GH alone. E2 per se had no effect on P-STAT5. E2-enhanced GH signaling was effective in increasing osteopontin, bone-sialoprotein, and IGF II mRNA expression to a greater extent than GH alone. We then studied the effect of E2 on the protein levels of the negative regulator of GH signaling, suppressor of cytokine signaling-2 (SOCS2). E2 (10(-11) M-10(-7) M) reduced dose-dependently SOCS2 protein levels without modifying its mRNA expression. The silencing of SOCS2 gene prevented E2 positive effect on GH induced P-STAT5 and on GH induced bone-sialoprotein and osteopontin mRNA expression. Treatment with the inhibitor of DNA-dependent RNA synthesis, actinomycin-D, did not prevent E2 induced decrease of SOCS2, thus suggesting a non-genomic effect. E2 promoted an increase in SOCS2 ubiquitination. To determine if increased ubiquitination of SOCS2 by E2 led to degradation by proteasome, hOBs were pretreated with the proteasome inhibitor MG132 (5 μM) which blocked E2 reduction of SOCS2. These findings demonstrate for the first time that E2 can amplify GH intracellular signaling in hOBs with an essential role played by the reduction of the SOCS2 mediated feedback loop. Copyright © 2013 Elsevier Inc. All rights reserved.

Bouleftour W, Juignet L, Verdière L, et al.

Deletion of OPN in BSP knockout mice does not correct bone hypomineralization but results in high bone turnover

[J]. Bone bone, 2018(120):411-422. doi: 10.1016/j.bone.2018.12.001.

URL     [本文引用: 4]

Takai H, Matsumura H, Matsui S, et al.

Unliganded estrogen receptor α stimulates bone sialoprotein gene expression

[J]. Gene, 2014, 539(1):50-57. doi: 10.1016/j.gene.2014.01.063.

DOI      URL     [本文引用: 1]

Wang H, Wang J.

Estrogen-related receptor alpha interacts cooperatively with peroxisome proliferator-activated receptor-gamma coactivator-1alpha to regulate osteocalcin gene expression

[J]. Cell Biol Int, 2013, 37(11):1259-1265. doi: 10.1002/cbin.10148.

URL     [本文引用: 2]

Li J, Chen Y, Kawazoe N, et al.

Ligand density-dependent influence of arginine-glycine-aspartate functionalized Gold nanoparticles on osteogenic and adipogenic differentiation of mesenchymal stem cells

[J]. Nano Res, 2018, 11(3):1247-1261. doi: 10.1007/s12274-017-1738-5.

DOI      URL     [本文引用: 1]

Zhu J, Hoop CL, Case DA, et al.

Cryptic binding sites become accessible through surface reconstruction of the type I collagen fibril

[J]. Sci Rep, 2018, 8(1):16646. doi: 10.1038/s41598-018-34616-z.

DOI      URL     [本文引用: 1]

Pitaru S, Narayanan S, Olson S, et al.

Specific cementum attachment protein enhances selectively the attachment and migration of periodontal cells to root surfaces

[J]. J Periodontal Res, 1995, 30(5):360-368. doi: 10.1111/j.1600-0765.1995.tb01288.x.

URL     PMID      [本文引用: 1]

A specific cementum attachment protein (CAP) was identified in human cementum and found to bind with high affinity to non-demineralized root surfaces, hydroxyapatite and fibronectin. Attempting to elucidate the biological function of this protein and its possible role in cementogenesis the capacity of CAP to promote selective cell migration towards and attachment of various periodontal derived cell populations to root surfaces in vitro was assessed. Human gingival fibroblasts (HGF), periodontal ligament cells (HPC), and alveolar bone cells (HABC) were labeled with [3H]Thymidine during their exponential growth phase. Root slices, 300 microns thick, were incubated with increasing concentrations of CAP. Untreated and fibronectin (FN) treated root slices served as negative and positive controls, respectively. Migration was assessed by placing root slices on confluent layers of labeled cells maintained in serum free medium and determining the number of cells migrated onto the root surface 3 days thereafter. Attachment was assessed by incubating root slices with labeled cell suspensions for 2 h and determining the number of attached cells. CAP promoted both cell migration and attachment dose dependently. HABC responded better than HPC and HGF to CAP treated root slices, and HPC response was higher than that of HGF. Cell attachment was dose dependently inhibited by synthetic RGD peptides. FN did not affect the migration of HGF, barely enhanced that of HABC, and was less potent than CAP at enhancing the migration of HPC. FN was more effective than CAP in promoting the attachment of HGF to root slices, but it was as potent as CAP in supporting the attachment of HPC and HABC.(ABSTRACT TRUNCATED AT 250 WORDS)

Montoya G, Arenas J, Romo E, et al.

Human recombinant cementum attachment protein (hrPTPLa/CAP) promotes hydroxyapatite crystal formation in vitro and bone healing in vivo

[J]. Bone, 2014, 69(69):154-164. doi: 10.1016/j.bone.2014.09.014.

DOI      URL     [本文引用: 1]

Tye CE, Hunter GK, Goldberg HA.

Identification of the type I collagen-binding domain of bone sialoprotein and characterization of the mechanism of interaction

[J]. J Biol Chem, 2005, 280(14):13487-13492. doi: 10.1074/jbc.M408923200.

DOI      URL     [本文引用: 1]

Liu L, Qin C, Butler WT, et al.

Controlling the orientation of bone osteopontin via its specific binding with collagen I to modulate osteoblast adhesion

[J]. J Biomed Mater Res A, 2007, 80(1):102-110. doi: 10.1002/jbm.a.30858.

URL     [本文引用: 1]

Rattanapisit K, Abdulheem S, Chaikeawkaew D, et al.

Osteopontin regulates dentin and alveolar bone development and mineralization

[J]. Bonedoi: 10.1016/j.bone, 2017(107):196-207. doi: 10.1016/j.bone.2017.12.004.

URL     [本文引用: 1]

Naqvi SM, Panadero Pérez JA, Kumar V, et al.

A novel 3D osteoblast and osteocyte model revealing changes in mineralization and pro-osteoclastogenic paracrine signaling during estrogen deficiency

[J]. Front Bioeng Biotechnol, 2020, 8:601. doi: 10.3389/fbioe.2020.00601.

DOI      URL     [本文引用: 1]

/