口腔疾病防治 ›› 2020, Vol. 28 ›› Issue (8): 477-486.DOI: 10.12016/j.issn.2096-1456.2020.08.001
收稿日期:
2019-08-11
修回日期:
2020-02-14
出版日期:
2020-08-20
发布日期:
2020-07-15
通讯作者:
陈松龄
作者简介:
陈松龄,主任医师,教授,博士生导师,中山大学第一附属医院口腔科学科带头人,首席专家。兼任中华口腔医学会牙及牙槽外科专业委员会副主任委员,中华口腔医学会口腔颌面外科专业委员会委员,中国香港地区口腔种植学会副会长,国际口腔种植医师学会(The International Congress of Oral Implantologists,ICOI)中国总会副会长,中国康复医学会修复重建外科专业委员会颅颌面外科学组委员,广东省口腔医学会理事,广东省临床医学学会牙种植学专业委员会主任委员,广东省口腔医学会口腔种植学专业委员会副主任委员、口腔颌面外科专业委员会常务委员,《口腔疾病防治》、《中华口腔医学研究杂志(电子版)》等期刊编委。主持承担国家自然科学基金、省级科研基金课题12项。获得广东省科学技术奖1项。发表学术论文120篇,其中以第一或通信作者发表SCI论文23篇。在国际上提出上颌窦黏膜干细胞成骨概念,获得2017年国际口腔种植医师学会最高年度奖(Ralph V. Mckinney,Jr. Award in basic and clinical research for 2017)
基金资助:
Received:
2019-08-11
Revised:
2020-02-14
Online:
2020-08-20
Published:
2020-07-15
Contact:
Songling CHEN
摘要:
上颌窦底提升的技术不断发展,上颌窦底提升后的成骨机制一直是学者关注的问题。上颌窦黏膜是上颌窦底提升后窦底空间成骨过程中不可或缺的生理结构,近年来有关上颌窦底黏膜在窦底空间成骨中的作用是一个研究热点。研究表明,在上颌窦底提升术后窦底空间成骨过程中,上颌窦底黏膜发挥天然的生物屏障膜的作用,同时,其本身具有成骨能力。研究还发现上颌窦底黏膜来源的上颌窦黏膜干细胞(maxillary sinus membrane stem cells, MSMSCs)具有间充质干细胞特性,可分化为成骨细胞,参与上颌窦底提升术后的窦底空间成骨;微小RNAs、长链非编码RNAs和环状RNAs等小分子RNA可调控MSMSCs成骨分化,这可能是促进窦底空间成骨重要的生物靶点。本文将从上颌窦底黏膜与上颌窦底提升成骨的关系、上颌窦底黏膜的屏障和成骨功能、参与窦底空间成骨的成骨细胞来源、上颌窦黏膜干细胞成骨分化的分子调控机制作一阐述。
中图分类号:
陈松龄,朱双喜. 上颌窦底黏膜在上颌窦底提升术后窦底空间成骨中的作用[J]. 口腔疾病防治, 2020, 28(8): 477-486.
CHEN Songling,ZHU Shuangxi. The role of the membrane of the maxillary sinus in space osteogenesis under the sinus floor after elevation of the sinus floor[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(8): 477-486.
图1 经牙槽嵴上颌窦底提升窦底空间的稳定性和密闭性有利于成骨
Figure 1 The stability and tightness of the sinus floor space after transcrestal sinus floor elevation are conducive to osteogenesis a: schematic diagram of internal maxillary sinus floor elevation; b: maxillary sinus floor elevation postsurgery; c: 12 months after maxillary sinus floor elevation
图 2 侧壁开窗上颌窦底提升窦底空间的稳定性和密闭性有利于成骨
Figure 2 The stability and tightness of the sinus floor space after lateral window sinus floor elevation are conducive to osteogenesis a: maxillary sinus floor elevation presurgery; b&c: lateral window for maxillary sinus floor elevation; d: bone powder was implanted through the bone window; e: the bone window was closed by biofilm; f: 6 months after maxillary sinus floor elevation
图3 经牙槽嵴上颌窦底提升不植骨同期牙种植
Figure 3 New bone formation did not exceed the level of the top of the implant a: before the operation; b: immediately after the operation; c: 9 months after the operation; d: 12 months after the operation; e: 24 months after the operation; new bone formation did not exceed the level of the top of the implant, after internal maxillary sinus floor elevation and simultaneous implantation without bone grafting
图4 犬上颌窦底提升不植骨和植骨同期种植的成骨实验研究
Figure 4 Experimental study on osteogenesis after sinus floor elevation and simultaneous dental implantation in dogs with or without bone grafting a: no new bone covered the top of the implant 6 months after the operation without bone grafting; b: new bone covered the top of the implant 6 months after the operation with bone grafting
图5 上颌窦底黏膜的取材
Figure 5 Sampling of the maxillary sinus membrane a: histological diagram of the maxillary sinus membrane, whether its innermost layer is called the periosteum or not; the latest consensus and conclusions have not been found; b: oral panorama of clinical specimens; c: materials of the human maxillary sinus membrane obtained during the operation
图6 上颌窦底黏膜干细胞的成软骨能力
Figure 6 Maxillary sinus membrane stem cells have chondrogenic capacity a: cell pellets after 4 weeks of chondrogenic induction in each group; b: comparison of cell pellet wet weight in each group; c: histology of pellets in each group; d: comparison of COL-2 expression in cell pellets of each group; e~f: quantitative comparison of chondroitin sulfate and hyaluronan in the cell pellets of each group; MSMSCs: maxillary sinus mesenchymal stem cells; BMSSCs: bone marrow stromal stem cells; DPSCs: dental pulp stem cells; PDLSCs: periodontal ligament stem cells
图7 上颌窦底黏膜干细胞的成骨能力
Figure 7 Maxillary sinus membrane stem cells have osteogenic capacity a: the comparison of calcium nodule formation by alizarin red staining after 4 weeks of osteogenic induction in each group; b: the quantitative comparison of calcium nodule formation by alizarin red staining(ARS) after 4 weeks of osteogenic induction in each group; c: the comparison of calcium concentration in each group after 4 weeks of osteogenic induction; d: the comparison of alkaline phosphatase activity in each group after 4 weeks of osteogenic induction; e: the comparison of osteogenic factor protein expression in each group after 4 weeks of osteogenic induction; MSMSCs: maxillary sinus mesenchymal stem cells; BMSSCs: bone marrow stromal stem cells; DPSCs: dental pulp stem cells; PDLSCs: periodontal ligament stem cells
[1] |
Meloni SM, Tallarico M, Lumbau A, et al. Sinus lift grafting with anorganic bovine bone versus 50% autologous bone mixed with 50% anorganic bovine bone-5-year after loading results from a randomised controlled trial[J]. Clin Oral Implants Res, 2019,30(S19):506-506.
DOI URL |
[2] |
Boyne PJ, James RA. Grafting of the maxillary sinus floor with autogenous marrow and bone[J]. J Oral Surg, 1980,38(8):613-616.
URL PMID |
[3] | Summers RB. A new concept in maxillary implant surgery: the osteotome technique[J]. Compendium, 1994, 38(): 152, 154-156. |
[4] |
Khojasteh A, Kheiri L, Motamedian SR, et al. Guided bone regeneration for the reconstruction of alveolar bone defects[J]. Ann Maxillofac Surg, 2017,7(2):263-267.
DOI URL PMID |
[5] |
Zitzmann NU, Schärer P. Sinus elevation procedures in the resorbed posterior maxilla. Comparison of the crestal and lateral approaches[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1998,85(1):8-17.
DOI URL PMID |
[6] |
Nejat Nizam, Önder Gürlek, Mehmet Emin Kaval. Extra-short implants with osteotome sinus floor elevation: a prospective clinical study[J]. Int J Oral Maxillofac Implants, 2020,35(2):415-422.
URL PMID |
[7] |
Park YH, Jung UW, Kim CS, et al. Resonance frequency analysis of tapered implants placed at maxillary posterior sites after lateral sinus augmentation: a 1.5-year follow-up prospective studyt[J]. Implant Dent, 2019,28(1):62-67.
URL PMID |
[8] |
Lundgren S, Anderson S, Federico G, et al. Bone reformation with sinus membrane elevation: a new surgical technique for maxillary sinus floor augmentation[J]. Clin Implant Dent Relat Res, 2004,6(3):165-173.
URL PMID |
[9] | Cricchio G, Palma VC, Faria PE, et al. Histological findings following the use of a space-making device for bone reformation and implant integration in the maxillary sinus of primates[J]. Clin Implant Dent Relat Res, 2009,11(Suppl 1):e14-e22. |
[10] | Cossellu G, Farronato G, Farronato D, et al. Space-maintaining management in maxillary sinus lifting: a novel technique using a resorbable polymeric thermo-reversible gel[J]. Int J Oral Maxillofac Surg, 2017,46(5):648-654. |
[11] |
Atef M, Hakam MM, Elfaramawey MI, et al. Nongrafted sinus floor elevation with a space-maintaining titanium mesh: case-series study on four patients[J]. Clin Implant Dent Relat Res, 2014,16(6):893-903.
DOI URL PMID |
[12] |
Park WB, Kang KL, Han JY. Factors influencing long-term survival rates of implants placed simultaneously with lateral maxillary sinus floor augmentation: a 6-to 20-year retrospective study[J]. Clin Oral Implants Res, 2019,30(10):977-988.
URL PMID |
[13] |
Fouad W, Osman A, Atef M, et al. Guided maxillary sinus floor elevation using deproteinized bovine bone versus graftless schneiderian membrane elevation with simultaneous implant placement: randomized clinical trial[J]. Clin Implant Dent Relat Res, 2018,20(3):424-433.
DOI URL PMID |
[14] |
Behrend C, Carmouche J, Millhouse PW, et al. Allogeneic and autogenous bone grafts are affected by historical donor environmental exposure[J]. Clin Orthop Relat Res, 2016,474(6):1405-1409.
DOI URL PMID |
[15] |
Scala A, Botticelli D, Faeda RS, et al. Lack of influence of the Schneiderian membrane in forming new bone apical to implants simultaneously installed with sinus floor elevation: an experimental study in monkeys[J]. Clin Oral Implants Res, 2012,23(2):175-181.
DOI URL PMID |
[16] |
Mohan N, Wolf J, Dym H. Maxillary sinus augmentation[J]. Dent Clin North Am, 2015,59(2):375-388.
DOI URL PMID |
[17] |
Chen HH, Lin YC, Lee SY, et al. Influence of sinus floor configuration on grafted bone remodeling after osteotome sinus floor elevation[J]. J Periodontol, 2017,88(1):10-16.
URL PMID |
[18] |
Zhu LQ, Yang JK, Gong JX, et al. Optimized beagle model for maxillary sinus floor augmentation via a mini-lateral window with simultaneous implant placement[J]. J Int Med Res, 2018,46(11):4684-4692.
DOI URL PMID |
[19] |
Falah M, Srouji S. Use of buccal fat pad for closure of perforation and graft material in a maxillary sinus elevation procedure: a preliminary study[J]. Int J Oral Maxillofac Implants, 2016,31(4):842-848.
DOI URL PMID |
[20] |
Danesh-Sani SA, Loomer PM, Wallace SS. A comprehensive clinical review of maxillary sinus floor elevation: anatomy, techniques, biomaterials and complications[J]. Br J Oral Maxillofac Surg, 2016,54(7):724-730.
DOI URL PMID |
[21] |
Palma VC, Magro-Filho O, de Oliveria JA, et al. Bone reformation and implant integration following maxillary sinus membrane elevation: an experimental study in primates[J]. Clin Implant Dent Relat Res, 2006,8(1):11-24.
DOI URL PMID |
[22] |
Moraschini V, Uzeda MG, Sartoretto SC, et al. Maxillary sinus floor elevation with simultaneous implant placement without grafting materials: a systematic review and meta-analysis[J]. Int J Oral Maxillofac Surg, 2017,46(5):636-647.
DOI URL PMID |
[23] |
Starch-Jensen T, Schou S. Maxillary sinus membrane elevation with simultaneous installation of implants without the use of a graft material: a systematic review[J]. Implant Dent, 2017,26(4):621-633.
DOI URL PMID |
[24] | Elgali I, Omar O, Dahlin C, et al. Guided bone regeneration: materials and biological mechanisms revisited[J]. Eur J Oral Sci, 2017,125(5):315-337. |
[25] | Angelo T, Marcel W, Andreas K, et al. Biomechanical stability of dental implants in augmented maxillary sites: results of a randomized clinical study with four different biomaterials and PRF and a biological view on guided bone regeneration[J]. Biomed Res Int, 2015: 1-17. |
[26] |
Li X, Chen SL, Zhu SX, et al. Guided bone regeneration using collagen membranes for sinus augmentation[J]. Br J Oral Maxillofac Surg, 2012,50(1):69-73.
DOI URL PMID |
[27] |
Mahler D, Levin L, Zigdon H, et al. The "dome phenomenon" associated with maxillary sinus augmentation[J]. Clin Implant Dent Relat Res, 2009,11(Suppl 1):e46-e51.
DOI URL |
[28] |
Lundgren S, Andersson S, Sennerby L. Spontaneous bone formation in the maxillary sinus after removal of a cyst: coincidence or consequence?[J]. Clin Implant Dent Relat Res, 2003,5(2):78-81.
DOI URL PMID |
[29] |
Jung YS, Chung SW, Nam W, et al. Spontaneous bone formation on the maxillary sinus floor in association with an extraction socket[J]. Int J Oral Maxillofac Surg, 2007,36(7):656-657.
DOI URL PMID |
[30] |
Srouji S, Ben-David D, Lotan R, et al. The innate osteogenic potential of the maxillary sinus (Schneiderian) membrane: an ectopic tissue transplant model simulating sinus lifting[J]. Int J Oral Maxillofac Surg, 2010,39(8):793-801.
DOI URL PMID |
[31] |
Gruber R, Kandler B, Fuerst G, et al. Porcine sinus mucosa holds cells that respond to bone morphogenetic protein (BMP)-6 and BMP-7 with increased osteogenic differentiation in vitro[J]. Clin Oral Implants Res, 2004,15(5):575-580.
DOI URL PMID |
[32] |
Guo JB, Weng JQ, Rong Q, et al. Investigation of multipotent postnatal stem cells from human maxillary sinus membrane[J]. Sci Rep, 2015,5(1):11660.
DOI URL |
[33] |
An J, Yang H, Zhang Q, et al. Natural products for treatment of osteoporosis: the effects and mechanisms on promoting osteoblast-mediated bone formation[J]. Life Sci, 2016,147:46-58.
DOI URL PMID |
[34] |
Liu X, Li Q, Wang F, et al. Maxillary sinus floor augmentation and dental implant placement using dentin matrix protein-1 gene-modified bone marrow stromal cells mixed with deproteinized boving bone: a comparative study in beagles[J]. Arch Oral Biol, 2016,64:102-108.
DOI URL PMID |
[35] |
Zhou Q, Yu BH, Liu WC, et al. BM-MSCs and Bio-Oss complexes enhanced new bone formation during maxillary sinus floor augmentation by promoting differentiation of BM-MSCs[J]. In Vitro Cell Dev Biol Anim, 2016,52(7):757-771.
DOI URL PMID |
[36] | Barbu HM, Andreescu CF, Comaneanu MR, et al. Maxillary sinus floor augmentation to enable one-stage implant placement by using bovine bone substitute and platelet-rich fibrin[J]. Biomed Res Int, 2018: 1-6. |
[37] |
Bonazza V, Borsani E, Buffoli B, et al. In vitro treatment with concentrated growth factors (CGF) and Sodium orthosilicate positively affects cell renewal in three different human cell lines[J]. Cell Biol Int, 2018,42(3):353-364.
URL PMID |
[38] |
Chen X, Wang J, Yu L, et al. Effect of concentrated growth factor (CGF) on the promotion of osteogenesis in bone marrow stromal cells (BMSC) in vivo[J]. Sci Rep, 2018,8(1):5876.
DOI URL PMID |
[39] |
Rong Q, Li X, Chen SL, et al. Effect of the schneiderian membrane on the formation of bone after lifting the floor of the maxillary sinus: an experimental study in dogs[J]. Br J Oral Maxillofac Surg, 2015,53(7):607-612.
DOI URL PMID |
[40] | 张静, 朱双喜, 彭伟, 等. 犬上颌窦黏膜干细胞的培养和成骨性能的鉴定[J]. 口腔疾病防治, 2018,26(7):422-427. |
Zhang J, Zhu SX, Peng W , et al. Culture and identification the osteogenic property of maxillary sinus membrane stem cells[J]. J Prev Treant Stomatol Dis , 2018,26(7):422-427. | |
[41] |
Luan ZJ, Liu BL, Shi LA. Angiotensin II-induced micro RNA-21 culprit for non-small-cell lung adenocarcinoma[J]. Drug Dev Res, 2019,80(8):1031-1039.
DOI URL PMID |
[42] |
Gu X, Li M, Jin Y, et al. Identification and integrated analysis of differentially expressed lncRNAs and circRNAs reveal the potential ceRNA networks during PDLSC osteogenic differentiation[J]. BMC Genet, 2017,18(1):100.
DOI URL PMID |
[43] |
Li X, Wu Z, Fu X, et al. lncRNAs: insights into their function and mechanics in underlying disorders[J]. Mutat Res Rev Mutat Res, 2014,762:1-21.
DOI URL PMID |
[44] |
Fan FY, Rui D, Ling Q, et al. miR-203a-3p.1 is involved in the regulation of osteogenic differentiation by directly targeting Smad9 in MM-MSCs[J]. Oncol Lett, 2019,18(6):6339-6346.
DOI URL PMID |
[45] |
荣琼, 朱双喜, 陈松龄, 等. 侧壁开窗法上颌窦底提升术植入Bio-Oss后骨生成的mRNA表达谱[J]. 中国病理生理杂志, 2013,29(6):1102-1113.
DOI URL |
Rong Q, Zhu SX, Chen SL , et al. Transcriptional profiling of bone formation after Bio-Oss implantation in maxillary sinus floor elevation by lateral window approach[J]. Chin J Pathophysiology, 2013,29(6) : 1102-1113.
DOI URL |
|
[46] |
Peng W, Zhu SX, Li X, et al. miR-27b-3p suppressed osteogenic differentiation of maxillary sinus membrane stem cells by targeting Sp7[J]. Implant Dent, 2017,26(4):492-499.
DOI URL PMID |
[47] |
Zhu SX, Peng W, Li X, et al. miR-1827 inhibits osteogenic differentiation by targeting IGF1 in MSMSCs[J]. Sci Rep, 2017,7:46136.
DOI URL PMID |
[48] |
Fang Y, Fullwood MJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer[J]. Genomics Proteomics Bioinformatics, 2016,14(1):42-54.
DOI URL PMID |
[49] |
Peng W, Zhu SX, Wang J, et al. Lnc-NTF3-5 promotes osteogenic differentiation of maxillary sinus membrane stem cells via sponging miR-93-3p[J]. Clin Implant Dent Relat Res, 2018,20(2):110-121.
DOI URL PMID |
[50] |
Weng JQ, Peng W, Zhu SX, et al. Long noncoding RNA sponges miR-454 to promote osteogenic differentiation in maxillary sinus membrane stem cells[J]. Implant Dent, 2017,26(2):178-186.
DOI URL PMID |
[51] |
Qian DY, Yan GB, Bai B, et al. Differential circRNA expression profiles during the BMP2-induced osteogenic differentiation of MC3T3-E1 cells[J]. Biomedicine & Pharmacotherapy, 2017,90:492-499.
DOI URL PMID |
[52] |
Pamudurti NR, Bartok O, Jens M, et al. Translation of circRNAs[J]. Mol Cell, 2017,66(1):9-21.
DOI URL PMID |
[53] |
Peng W, Zhu SX, Chen JL, et al. Hsa_circRNA_33287 promotes the osteogenic differentiation of maxillary sinus membrane stem cells via miR-214-3p/Runx3[J]. Biomedicine & Pharmacotherapy, 2019,109:1709-1717.
DOI URL PMID |
[1] | 陈泽涛,林义雄,杨杰婷,黄宝鑫,陈卓凡. 基于“免疫微环境调控”的屏障膜研发理念[J]. 口腔疾病防治, 2021, 29(8): 505-514. |
[2] | 王承煜,范亚伟,王珏. 富血小板纤维蛋白与脱细胞真皮基质修复兔口腔黏膜缺损效果比较[J]. 口腔疾病防治, 2021, 29(7): 442-448. |
[3] | 左新慧,李君,韩祥祯,刘小元,何惠宇. 低氧诱导因子-1α对骨髓间充质干细胞成骨分化与血管生成相关因子的影响[J]. 口腔疾病防治, 2021, 29(7): 449-455. |
[4] | 王旻,姜楠,祝颂松. 新型钛表面微纳米共存梯度仿生结构对骨髓间充质细胞黏附、增殖及成骨分化的影响[J]. 口腔疾病防治, 2021, 29(4): 226-233. |
[5] | 李天乐,常欣楠,仇旭童,付笛,张陶. 机械刺激对牙周骨组织工程干细胞分化的影响[J]. 口腔疾病防治, 2021, 29(4): 273-278. |
[6] | 赵娅琴,刘艾芃,岑峰,杨凯文,李艳芳,邓文正. 动态实时导航与数字化导板导航牙种植精确度的比较[J]. 口腔疾病防治, 2021, 29(3): 178-183. |
[7] | 陈泽策,龙茜,管晓燕,刘建国. MicroRNA-21调控破骨和成骨分化作用在正畸治疗中的研究进展[J]. 口腔疾病防治, 2021, 29(3): 211-216. |
[8] | 石维薇,丁一,田卫东,郭淑娟. 脂多糖预处理的牙囊细胞外泌体对牙周炎牙周膜细胞成骨分化的影响[J]. 口腔疾病防治, 2021, 29(2): 81-87. |
[9] | 颜杉钰,梅宏翔,李娟. 间充质干细胞迁移在骨组织损伤修复中的作用[J]. 口腔疾病防治, 2021, 29(12): 854-858. |
[10] | 王艳琳,孙晓军. 基于CBCT对上颌窦外侧壁厚度的研究[J]. 口腔疾病防治, 2021, 29(11): 761-765. |
[11] | 许竞. 种植初期稳定性的意义及其参数标准[J]. 口腔疾病防治, 2021, 29(1): 2-10. |
[12] | 容明灯,周腾飞. 上颌窦黏膜病变对上颌窦底提升术的影响及治疗对策[J]. 口腔疾病防治, 2020, 28(9): 551-561. |
[13] | 马灵芝,施娇壮,戈文斌,张琨,余兵,刘亚丽. miR-21对人牙周膜干细胞增殖及成骨分化的影响[J]. 口腔疾病防治, 2020, 28(9): 569-574. |
[14] | 秦青,宋杨,刘佳,李强. 酪蛋白激酶2相互作用蛋白1对人牙周膜干细胞成骨分化能力的影响[J]. 口腔疾病防治, 2020, 28(7): 421-426. |
[15] | 王亚敏,周震,刀俊峰,陈祈月,刘文静,宋光保. 浓缩生长因子应用于上颌前牙区骨缺损引导骨再生的效果评价[J]. 口腔疾病防治, 2020, 28(4): 236-240. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
本作品遵循Creative Commons Attribution 3.0 License授权许可.