口腔疾病防治 ›› 2020, Vol. 28 ›› Issue (9): 600-606.DOI: 10.12016/j.issn.2096-1456.2020.09.010
收稿日期:
2019-07-01
修回日期:
2020-05-17
出版日期:
2020-09-20
发布日期:
2020-08-24
通讯作者:
韩冰
作者简介:
徐鸿玮,住院医师,硕士研究生在读,Email:基金资助:
Received:
2019-07-01
Revised:
2020-05-17
Online:
2020-09-20
Published:
2020-08-24
Contact:
Bing HAN
摘要:
骨组织工程作为治疗口腔颌面部外伤、炎症和肿瘤等引起的颌骨缺损的新兴方式,因其材料来源广泛、免疫排斥风险低及可个性化治疗的优点,是近年来研究的热点。但由于口腔颌面部咀嚼、表情等功能性活动,对支架的机械强度具有较高要求。本文对近年增强颌骨组织工程支架材料机械强度方面的研究进行归纳、总结,综述了增强颌骨支架机械强度的方法。研究结果显示,用于增强颌骨组织工程支架机械强度的方法主要有复合改性法、交联法、涂层、仿生支架和其他新型加工方式。其中复合改性研究最早,虽然过程简单但引入其他物质增加降解产物,需调控其复合比例;交联法因交联剂的使用存在细胞毒性风险;涂层法不改变原支架基础结构仅做表面改性,如克服界面间应力集中问题可更好地应用;仿生支架和微观调控支架是近年新兴的技术,能够改善材料内部分子排列方式,从而增强机械强度。因此,在完善传统方式的基础上,未来的研究重点将转向纳米级新材料、仿生支架及对支架微观结构精确控制的新方法等方面。
中图分类号:
徐鸿玮,韩冰. 颌骨组织工程支架材料机械强度增强方法研究进展[J]. 口腔疾病防治, 2020, 28(9): 600-606.
XU Hongwei,HAN Bing. Research progress in mechanical strength enhancement methods of jaw tissue engineering scaffolds[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(9): 600-606.
[1] |
Tarafder S, Dernell WS, Bandyopadhyay A, et al. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model[J]. J Biomed Mater Res B Appl Biomater, 2015,103(3):679-690.
URL PMID |
[2] |
Subramaniam S, Fang YH, Sivasubramanian S, et al. Hydroxyapatite-calcium sulfate-hyaluronic acid composite encapsulated with collagenase as bone substitute for alveolar bone regeneration[J]. Biomaterials, 2016,74:99-108.
DOI URL PMID |
[3] |
Boughton OR, Ma S, Cai X, et al. Computed tomography porosity and spherical indentation for determining cortical bone millimetre-scale mechanical properties[J]. Sci Rep, 2019,9(1):7416.
DOI URL PMID |
[4] | Mangano C, Mangano F, Gobbi L, et al. Comparative study between laser light stereo-lithography 3D-printed and traditionally sintered biphasic calcium phosphate scaffolds by an integrated morphological, morphometric and mechanical analysis[J]. Int J Mol Sci, 2019,20(13):3118-3134. |
[5] | Elsawy MA, Kim KH, Park JW, et al. Hydrolytic degradation of polylactic acid (PLA) and its composites[J]. Renewa Sust Energy Rev, 2017,79:1346-1352. |
[6] |
Ma Y, Li Y, Hao J, et al. Evaluation of the degradation, biocompatibility and osteogenesis behavior of lithium-doped calcium polyphosphate for bone tissue engineering[J]. Biomed Mater Eng, 2019,30(1):23-36.
URL PMID |
[7] | Li JJ, Dunstan CR, Entezari AQ, et al. A novel bone substitute with high bioactivity, strength, and porosity for repairing large and load-bearing bone defects[J]. Adv Healthc Mater, 2019,8(13):e1-e14. |
[8] | Tithito T, Suntornsaratoon P, Charoenphandhu N, et al. Fabrication of biocomposite scaffolds made with modified hydroxyapatite inclusion of chitosan-grafted-poly(methyl methacrylate) for bone tissue engineering[J]. Biomed Mater, 2019,14(2):1-13. |
[9] |
Nabavinia M, Khoshfetrat AB, Naderi-Meshkin H. Nano-hydroxyapatite-alginate-gelatin microcapsule as a potential osteogenic building block for modular bone tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2019,97:67-77.
DOI URL |
[10] |
Chen J, Zeng L, Chen X, et al. Preparation and characterization of bioactive glass tablets and evaluation of bioactivity and cytotoxicity in vitro[J]. Bioact Mater, 2017,3(3):315-321.
URL PMID |
[11] |
Liu B, Gao X, Sun Z, et al. Biomimetic porous silk fibroin/biphasic calcium phosphate scaffold for bone tissue regeneration[J]. J Mater Sci Mater Med, 2018,30. DOI: 10.1007/s10856-018-6208-4.
DOI URL PMID |
[12] |
Lee H, Yang GH, Kim M, et al. Fabrication of micro/nanoporous collagen/dECM/silk-fibroin biocomposite scaffolds using a low temperature 3D printing process for bone tissue regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2018,84:140-147.
DOI URL PMID |
[13] |
Qian G, Li X, He F, et al. Improving the anti-washout property of calcium phosphate cement by introducing konjac glucomannan/κ-carrageenan blend[J]. J Biomater Appl, 2019,33(8):1094-1104.
DOI URL PMID |
[14] |
Kumar S, Chatterjee K. Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold[J]. Nanoscale, 2015,7(5):2023-2033.
DOI URL PMID |
[15] |
Han X, Yang D, Yang C, et al. Carbon fiber reinforced PEEK composites based on 3D-printing technology for orthopedic and dental applications[J]. J Clin Med, 2019,8(2):240.
DOI URL |
[16] |
Farshid B, Lalwoani G, Mohammadi MS, et al. Two-dimensional graphene oxide-reinforced porous biodegradable polymeric nanocomposites for bone tissue engineering[J]. J Biomed Mater Res A, 2019,107(6):1143-1153.
URL PMID |
[17] |
Shi H, Ye X, He F, et al. Improving osteogenesis of calcium phosphate bone cement by incorporating with lysine: an in vitro study[J]. Colloids Surf B Biointerfaces, 2019,177:462-469.
DOI URL PMID |
[18] |
Sun X, Xu C, Wu G, et al. Poly(lactic-co-glycolic acid): applications and future prospects for periodontal tissue regeneration[J]. Polymers (Basel), 2017,9(6):189.
DOI URL |
[19] |
Koh KS, Choi JW, Park EJ, et al. Bone regeneration using silk hydroxyapatite hybrid composite in a rat alveolar defect model[J]. Int J Med Sci, 2018,15(1):59-68.
DOI URL PMID |
[20] |
Luo Y, Le Fer G, Dean D, et al. 3D printing of poly(propylene fumarate) oligomers: evaluation of resin viscosity, printing characteristics and mechanical properties[J]. Biomacromolecules, 2019,20(4):1699-1708.
DOI URL PMID |
[21] |
Wang P, He H, Cai R, et al. Cross-linking of dialdehyde carboxymethyl cellulose with silk sericin to reinforce sericin film for potential biomedical application[J]. Carbohydr Polym, 2019,212:403-411.
DOI URL PMID |
[22] |
Fang J, Li P, Lu X, et al. A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration[J]. Acta Biomater, 2019,88:503-513.
DOI URL PMID |
[23] |
Osorio DA, Lee BEJ, Kwiecien JM, et al. Cross-linked cellulose nanocrystal aerogels as viable bone tissue scaffolds[J]. Acta Biomater, 2019,87:152-165.
DOI URL PMID |
[24] | Thomas A. Preparation and characterization of gelatin-bioactive glass ceramic scaffolds for bone tissue engineering[J]. J Biomater Sci Polym Ed, 2019,30(7):1-16. |
[25] |
Lu HT, Lu TW, Chen CH, et al. Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering[J]. Int J Biol Macromol, 2019,128:973-984.
DOI URL PMID |
[26] |
Hughes EA, Parkes A, Williams RL, et al. Formulation of a covalently bonded hydroxyapatite and poly(ether ether ketone) composite[J]. J Tissue Eng, 2018,9:2041731418815570.
DOI URL PMID |
[27] |
Oryan A, Kamali A, Moshiri A, et al. Chemical crosslinking of biopolymeric scaffolds: current knowledge and future directions of crosslinked engineered bone scaffolds[J]. Int J Biol Macromol, 2018,107:678-688.
DOI URL PMID |
[28] |
Rezvanian P, Daza R, López PA, et al. Enhanced biological response of AVS-functionalized Ti-6Al-4V alloy through covalent immobilization of collagen[J]. Sci Rep, 2018,8:3337. DOI: 10.1038/s41598-018-21685-3.
DOI URL PMID |
[29] |
Kim BC, Kim HG, Lee SA, et al. Genipin-induced apoptosis in hepatoma cells is mediated by reactive oxygen species/c-Jun NH2-terminal kinase-dependent activation of mitochondrial pathway[J]. Biochem Pharmacol, 2005,70(9):1398-1407.
DOI URL PMID |
[30] |
Zhao X, Dong R, Guo B, et al. Dopamine-incorporated dual bioactive electroactive shape memory polyurethane elastomers with physiological shape recovery temperature, high stretchability, and enhanced C2C12 myogenic differentiation[J]. ACS Appl Mater Interfaces, 2017,9(35):29595-29611.
DOI URL PMID |
[31] |
Tian Q, Lin J, Rivera-Castaneda L, et al. Nano-to-submicron hydroxyapatite coatings for magnesium-based bioresorbable implants - deposition, characterization, degradation, mechanical properties, and cytocompatibility[J]. Sci Rep, 2019,9:810. DOI: 10.1038/s41598-018-37123-3
DOI URL PMID |
[32] |
Tsai CH, Hung CH, Kuo CN, et al. Improved bioactivity of 3D printed porous titanium alloy scaffold with chitosan/magnesium-calcium silicate composite for orthopaedic applications[J]. Materials (Basel), 2019,12(2):203.
DOI URL |
[33] |
Hirota M, Shima T, Sato I, et al. Development of a biointegrated mandibular reconstruction device consisting of bone compatible titanium fiber mesh scaffold[J]. Biomaterials, 2016,75:223-236.
DOI URL PMID |
[34] |
Ke D, Vu AA, Bandyopadhyay A, et al. Compositionally graded doped hydroxyapatite coating on titanium using laser and plasma spray deposition for bone implants[J]. Acta Biomater, 2019,84:414-423.
DOI URL PMID |
[35] |
Moeini S, Mohammadi MR, Simchi A. In-situ solvothermal processing of polycaprolactone/hydroxyapatite nanocomposites with enhanced mechanical and biological performance for bone tissue engineering[J]. Bioact Mater, 2017,2(3):146-155.
DOI URL PMID |
[36] |
Gao Y, Shao W, Qian W, et al. Biomineralized poly(l-lactic-co-glycolic acid)-tussah silk fibroin nanofiber fabric with hierarchical architecture as a scaffold for bone tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2018,84:195-207.
DOI URL PMID |
[37] |
Saha N, Shah R, Gupta P, et al. PVP-CMC hydrogel: an excellent bioinspired and biocompatible scaffold for osseointegration[J]. Mater Sci Eng C Mater Biol Appl, 2019,95:440-449.
DOI URL PMID |
[38] |
Zhu LY, Li L, Shi JP, et al. Mechanical characterization of 3D printed multi-morphology porous Ti6Al4V scaffolds based on triply periodic minimal surface architectures[J]. Am J Transl Res, 2018,10(11):3443-3454.
URL PMID |
[39] |
Chen Y, Han P, Vandi LJ, et al. A biocompatible thermoset polymer binder for direct ink writing of porous titanium scaffolds for bone tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2019,95:160-165.
DOI URL PMID |
[40] |
Shuai C, Li Y, Wang G, et al. Surface modification of nanodiamond: toward the dispersion of reinforced phase in poly-l-lactic acid scaffolds[J]. Int J Biol Macromol, 2019,126:1116-1124.
DOI URL PMID |
[41] |
Xu Y, Han J, Chai Y, et al. Development of porous chitosan/tripolyphosphate scaffolds with tunable uncross-linking primary amine content for bone tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2018,85:182-190.
DOI URL PMID |
[42] |
Hu M, He Z, Han F, et al. Reinforcement of calcium phosphate cement using alkaline-treated silk fibroin[J]. Int J Nanomedicine, 2018,13:7183-7193.
DOI URL PMID |
[1] | 陈静,陈文川. 瓷表面处理用氢氟酸替代物四丁基双氟氢氟化铵研究进展[J]. 口腔疾病防治, 2021, 29(9): 629-633. |
[2] | 陈泽涛,林义雄,杨杰婷,黄宝鑫,陈卓凡. 基于“免疫微环境调控”的屏障膜研发理念[J]. 口腔疾病防治, 2021, 29(8): 505-514. |
[3] | 左新慧,李君,韩祥祯,刘小元,何惠宇. 低氧诱导因子-1α对骨髓间充质干细胞成骨分化与血管生成相关因子的影响[J]. 口腔疾病防治, 2021, 29(7): 449-455. |
[4] | 李天乐,常欣楠,仇旭童,付笛,张陶. 机械刺激对牙周骨组织工程干细胞分化的影响[J]. 口腔疾病防治, 2021, 29(4): 273-278. |
[5] | 谭国忠,江千舟. 3D打印技术在牙髓再生领域的研究进展[J]. 口腔疾病防治, 2021, 29(4): 279-283. |
[6] | 赵娅琴,刘艾芃,岑峰,杨凯文,李艳芳,邓文正. 动态实时导航与数字化导板导航牙种植精确度的比较[J]. 口腔疾病防治, 2021, 29(3): 178-183. |
[7] | 周芳洁,何利邦,李继遥. 聚乳酸-羟基乙酸共聚物在牙髓疾病治疗中的应用前景[J]. 口腔疾病防治, 2021, 29(3): 202-205. |
[8] | 颜杉钰,梅宏翔,李娟. 间充质干细胞迁移在骨组织损伤修复中的作用[J]. 口腔疾病防治, 2021, 29(12): 854-858. |
[9] | 汤剑明,谢宏亮,路璐,李博涵,刘浩男,张国权. 数字化技术引导旋髂深动脉穿支嵌合瓣重建下颌骨复合性缺损[J]. 口腔疾病防治, 2021, 29(11): 766-770. |
[10] | 张凯,刘小元,李蕾,李君,韩祥祯,何惠宇. 细胞膜片复合3D打印马鹿角粉/丝素蛋白/聚乙烯醇支架对羊下颌骨缺损的修复效果[J]. 口腔疾病防治, 2021, 29(10): 669-676. |
[11] | 宾志文,王方,侯劲松. 青少年下颌骨缺损修复重建的研究进展[J]. 口腔疾病防治, 2021, 29(10): 711-715. |
[12] | 李玉姣,钱飞,张倩霞,王丹,王艺蓉,田宇. 3D打印在微创牙髓治疗中应用的研究进展[J]. 口腔疾病防治, 2021, 29(10): 716-720. |
[13] | 谢琳,冯晓黎,邓梓,马瑞,胡琛,邵龙泉. 口腔纳米材料的神经毒性及作用机制[J]. 口腔疾病防治, 2020, 28(9): 594-598. |
[14] | 何梦娇,李丽生,陈玉玲,骆凯. 细胞膜片技术及其在牙周组织再生中的研究进展[J]. 口腔疾病防治, 2020, 28(7): 458-462. |
[15] | 肖闻澜,胡琛,荣圣安,屈依丽. 自体牙本质作为骨移植材料的临床应用进展[J]. 口腔疾病防治, 2020, 28(6): 394-398. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
本作品遵循Creative Commons Attribution 3.0 License授权许可.