口腔疾病防治 ›› 2021, Vol. 29 ›› Issue (4): 217-225.DOI: 10.12016/j.issn.2096-1456.2021.04.001
收稿日期:
2020-03-23
修回日期:
2020-06-01
出版日期:
2021-04-20
发布日期:
2021-02-26
通讯作者:
翦新春
基金资助:
Received:
2020-03-23
Revised:
2020-06-01
Online:
2021-04-20
Published:
2021-02-26
Contact:
Xinchun JIAN
Supported by:
摘要:
口腔黏膜下纤维性变是一种能形成瘢痕、组织纤维化的慢性疾病。流行病学研究显示,咀嚼槟榔是导致口腔黏膜下纤维性变的危险因素。在中国的口腔黏膜下纤维性变患者均有咀嚼槟榔的习惯。研究证实,嚼槟榔、吸烤烟和饮白酒可增加口腔黏膜下纤维性变的风险。口腔黏膜下纤维性变被广泛认为是一种口腔癌前病变,病理表现为慢性炎症、结缔组织内广泛的胶原纤维沉积、上皮固有层或其下结缔组织内的局部炎症改变。口腔黏膜下纤维性变的癌变发生率为7%~30%。口腔黏膜下纤维性变的治疗主要采用曲安奈德和丹参酮注射液行黏膜下局部注射,对改善患者的张口度及口腔黏膜的烧灼痛效果良好,其治疗总有效率可达93%。本文就口腔黏膜下纤维性变的病因、致病机理、诊断与治疗进行阐述,以供同道们临床参考之用。
中图分类号:
翦新春,高兴. 口腔黏膜下纤维性变的病因、致病机理、诊断与治疗[J]. 口腔疾病防治, 2021, 29(4): 217-225.
JIAN Xinchun,GAO Xing. Etiology, pathogenesis, diagnosis and treatment of oral submucous fibrosis[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(4): 217-225.
图1 口腔黏膜下纤维性变癌变为口腔癌
Figure 1 The transformation of OSF into oral cancer a: cancer in the right soft palate; b: cancer in the left buccal region; c: cancer in the left corner of the mouth; OSF: oral submucous fibrosis
图2 口腔黏膜下纤维性变癌变的可能事件解析
Figure 2 Possible events in the malignant transformation of oral submucous fibrosis TGF-β: transforming growth factor; VEGF: vascular endothelial growth factor; EMT: epithelial-mesenchymal transition; PDGF: platelet derived growth factor; b-FGF: basic fibroblast growth factor; HIF-1α: hypoxia-inducible factor-1α; iNOS: inducible nitric oxide synthase; ROS: reactive oxygen species; IL: interleukin; GRO-α: growth regulation oncogene α
[1] |
Dionne KR, Warnakulasuriya S, Zain RB, et al. Potentially malignant disorders of the oral cavity: current practice and future directions in the clinic and laboratory[J]. Int J Cancer, 2015,136(3):503-515. doi: 10.1002/ijc.28754.
DOI URL PMID |
[2] |
Tilakaratne WM, Ekanayaka RP, Warnakulasuriya S. Oral submucous fibrosis: a historical perspective and a review on etiology and pathogenesis[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2016,122(2):178-191. doi: 10.1016/j.oooo.2016.04.003.
DOI URL PMID |
[3] |
Chattopadhyay A, Ray JG. Molecular pathology of malignant transformation of oral submucous fibrosis[J]. J Environ Pathol Toxicol Oncol, 2016,35(3):193-205. doi: 10.1615/JEnvironPatholToxicolOncol.2016014024.
DOI URL PMID |
[4] |
Gottipamula S, Sundarrajan S, Moorthy A, et al. Buccal mucosal epithelial cells downregulate CTGF expression in buccal submucosal fibrosis fibroblasts[J]. J Maxillofac Oral Surg, 2018,17(2):254-259. doi: 10.1007/s12663-017-1056-1.
DOI URL PMID |
[5] |
Arakeri G, Rai KK, Hunasgi S, et al. Oral submucous fibrosis: an update on current theories of pathogenesis[J]. J Oral Pathol Med, 2017,46(6):406-412. doi: 10.1111/jop.12581.
DOI URL PMID |
[6] |
Peng Q, Li H, Chen J, et al. Oral submucous fibrosis in Asian countries[J]. J Oral Pathol Med, 2020,49(4):294-304. doi: 10.1111/jop.12924.
URL PMID |
[7] |
Passi D, Bhanot P, Kacker D, et al. Oral submucous fibrosis: newer proposed classification with critical updates in pathogenesis and management strategies[J]. Natl J Maxillofac Surg, 2017,8(2):89-94. doi: 10.4103/njms.NJMS_32_17.
DOI URL PMID |
[8] |
Fang CY, Hsia SM, Hsieh PL, et al. Slug mediates myofibroblastic differentiation to promote fibrogenesis in buccal mucosa[J]. J Cell Physiol, 2019,234(5):6721-6730. doi: 10.1002/jcp.27418.
DOI URL PMID |
[9] |
Liu CM, Liao YW, Hsieh PL, et al. miR-1246 as a therapeutic target in oral submucosa fibrosis pathogenesis[J]. J Formos Med Assoc, 2019,118(7):1093-1098. doi: 10.1016/j.jfma.2019.02.014.
DOI URL PMID |
[10] |
Chang MC, Lin LD, Wu HL, et al. Areca nut-induced buccal mucosa fibroblast contraction and its signaling: a potential role in oral submucous fibrosis--a precancer condition[J]. Carcinogenesis, 2013,34(5):1096-1104. doi: 10.1093/carcin/bgt012.
DOI URL |
[11] |
Arakeri G, Brennan PA. Oral submucous fibrosis: an overview of the aetiology, pathogenesis, classification, and principles of management[J]. Br J Oral Maxillofac Surg, 2013,51(7):587-593. doi: 10.1016/j.bjoms.2012.08.014.
DOI URL PMID |
[12] |
Shieh DH, Chiang LC, Shieh TY. Augmented mRNA expression of tissue inhibitor of metalloproteinase-1 in buccal mucosal fibroblasts by arecoline and safrole as a possible pathogenesis for oral submucous fibrosis[J]. Oral Oncol, 2003,39(7):728-735. doi: 10.1016/s1368-8375(03)00101-5.
DOI URL PMID |
[13] |
Shieh TM, Lin SC, Liu CJ, et al. Association of expression aberrances and genetic polymorphisms of lysyl oxidase with areca-associated oral tumorigenesis[J]. Clin Cancer Res, 2007,13(15):4378-4385. doi: 10.1158/1078-0432.CCR-06-2685.
DOI URL |
[14] |
Lin CY, Hsieh PL, Liao YW, et al. Arctigenin reduces myofibroblast activities in oral submucous fibrosis by LINC00974 inhibition[J]. Int J Mol Sci, 2019,20(6):1328. doi: 10.3390/ijms20061328.
DOI URL |
[15] |
Yeh MC, Chen KK, Chiang MH, et al. Low-power laser irradiation inhibits arecoline-induced fibrosis: an in vitro study[J]. Int J Oral Sci, 2017,9(1):38-42. doi: 10.1038/ijos.2016.49.
DOI URL PMID |
[16] |
Illeperuma RP, Kim DK, Park YJ, et al. Areca nut exposure increases secretion of tumor-promoting cytokines in gingival fibroblasts that trigger DNA damage in oral keratinocytes[J]. Int J Cancer, 2015,137(11):2545-2557. doi: 10.1002/ijc.29636.
DOI URL PMID |
[17] |
Ahmed S, Misra DP, Agarwal V. Interleukin-17 pathways in systemic sclerosis-associated fibrosis[J]. Rheumatol Int, 2019,39(7):1135-1143. doi: 10.1007/s00296-019-04317-5.
DOI URL PMID |
[18] |
Ekanayaka RP, Tilakaratne WM. Oral submucous fibrosis: review on mechanisms of malignant transformation[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2016,122(2):192-199. doi: 10.1016/j.oooo.2015.12.018.
DOI URL PMID |
[19] |
Tsai CH, Lee SS, Chang YC. Hypoxic regulation of plasminogen activator inhibitor-1 expression in human buccal mucosa fibroblasts stimulated with arecoline[J]. J Oral Pathol Med, 2015,44(9):669-673. doi: 10.1111/jop.12284.
DOI URL PMID |
[20] |
Ye X, Zhang J, Lu R, et al. HBO: a possible supplementary therapy for oral potentially malignant disorders[J]. Med Hypotheses, 2014,83(2):131-136. doi: 10.1016/j.mehy.2014.05.011.
URL PMID |
[21] |
Zhou S, Qu X, Yu Z, et al. Survivin as a potential early marker in the carcinogenesis of oral submucous fibrosis[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol, 2010,109(5):575-581.doi: 10.1016/j.tripleo.2009.10.054.
DOI URL |
[22] |
Zhou S, Li L, Jian X, et al. The phosphorylation of survivin Thr34 by p34cdc2 in carcinogenesis of oral submucous fibrosis[J]. Oncol Rep, 2008,20(5):1085-1091. doi: 10.3892/or_00000113.
URL PMID |
[23] | 周晌辉, 李力力, 翦新春, 等. 口腔黏膜下纤维化癌变过程中G2、M期细胞周期蛋白与存活素磷酸化的研究[J]. 中华口腔医学杂志, 2008,43(12):709-712. doi: 10.3321/j.issn:1002-0098. 2008. 12.002. |
Zhou SH, Li LL, Jian XC, et al. Molecules of G2/M phase and the phosphorylation of survivin in the carcinogenesis of oral submucosal fibrosis[J]. Chin J Stomatol, 2008,43(12):709-712. doi: 10.3321/j.issn:1002-0098.2008.12.002. | |
[24] |
Hallikeri K, Burde K, Anehosur V, et al. p53 polymorphism and association of human papillomavirus in oral submucous fibrosis and oral squamous cell carcinoma: a case-control study[J]. J Oral Maxillofac Pathol, 2019,23(1):97-103. doi: 10.4103/jomfp.JOMFP_180_18.
DOI URL PMID |
[25] |
Bag S, Conjeti S, Das RK, et al. Computational analysis of p63(+) nuclei distribution pattern by graph theoretic approach in an oral precancer (submucous fibrosis)[J]. J Pathol Inform, 2013,4:35.doi: 10.4103/2153-3539.124006.
DOI URL PMID |
[26] |
Desai RS, Mamatha GS, Khatri MJ, et al. Immunohistochemical expression of CD34 for characterization and quantification of mucosal vasculature and its probable role in malignant transformation of atrophic epithelium in oral submucous fibrosis[J]. Oral Oncol, 2010,46(7):553-558. doi: 10.1016/j.oraloncology.2010. 04.004.
DOI URL PMID |
[27] |
Leight JL, Wozniak WA, Chen S, et al. Matrix rigidity regulates a switch between TGF-β1-induced apoptosis and epithelial-mesenchymal transition[J]. Mol Biol Cell, 2012,23(5):781-791. doi: 10.1091/mbc.E11-06-0537.
URL PMID |
[28] |
Gjorevski N, Boghaert E, Nelson CM. Regulation of epithelial-mesenchymal transition by transmission of mechanical stress through epithelial tissues[J]. Cancer Microenviron, 2012,5(1):29-38. doi: 10.1007/s12307-011-0076-5.
DOI URL PMID |
[29] |
Reshma V, Varsha BK, Rakesh P, et al. Aggrandizing oral submucous fibrosis grading using an adjunct special stain: a pilot study[J]. J Oral Maxillofac Pathol, 2016,20(1):36-46. doi: 10.4103/0973-029X.180925.
DOI URL PMID |
[30] |
Keshav R, Narayanappa U. Expression of proliferating cell nuclear antigen (PCNA) in oral submucous fibrosis: an immunohistochemical study[J]. J Clin Diagn Res, 2015,9(5):ZC20-ZC23. doi: 10.7860/JCDR/2015/13046.5885.
DOI URL PMID |
[31] |
Yuan Y, Hou X, Feng H, et al. Proteomic identification of cyclophilin A as a potential biomarker and therapeutic target in oral submucous fibrosis[J]. Oncotarget, 2016,7(37):60348-60365. doi: 10.18632/oncotarget.11254.
DOI URL PMID |
[32] |
Xie X, Jiang Y, Yuan Y, et al. MALDI imaging reveals NCOA7 as a potential biomarker in oral squamous cell carcinoma arising from oral submucous fibrosis[J]. Oncotarget, 2016,7(37):59987-60004. doi: 10.18632/oncotarget.11046.
URL PMID |
[33] |
Lu MY, Yu CC, Chen PY, et al. miR-200c inhibits the arecoline-associated myofibroblastic transdifferentiation in buccal mucosal fibroblasts[J]. J Formos Med Assoc, 2018,117(9):791-797. doi: 10.1016/j.jfma.2018.05.016.
DOI URL PMID |
[34] |
Liao YW, Yu CC, Hsieh PL, et al. miR-200b ameliorates myofibroblast transdifferentiation in precancerous oral submucous fibrosis through targeting ZEB2[J]. J Cell Mol Med, 2018,22(9):4130-4138. doi: 10.1111/jcmm.13690.
DOI URL PMID |
[35] |
Chang YC, Tsai CH, Lai YL, et al. Arecoline-induced myofibroblast transdifferentiation from human buccal mucosal fibroblasts is mediated by ZEB1[J]. J Cell Mol Med, 2014,18(4):698-708.doi: 10.1111/jcmm.13690.
DOI URL PMID |
[36] |
Fang CY, Yu CC, Liao YW, et al. LncRNA LINC00974 activates TGF-beta/Smad signaling to promote oral fibrogenesis[J]. J Oral Pathol Med, 2019,48(2):151-158. doi: 10.1111/jop.12805.
DOI URL PMID |
[37] |
Oscarsson N, Ny L, Molne J, et al. Hyperbaric oxygen treatment reverses radiation induced profibrotic and oxidative stress responses in a rat model[J]. Free Radic Biol Med, 2017,103:248-255. doi: 10.1016/j.freeradbiomed.2016.12.036.
DOI URL PMID |
[38] |
Sadaksharam J, Mahalingam S. Evaluation of oral pentoxifylline in the management of oral submucous fibrosis --an ultrasonographic study[J]. Contemp Clin Dent, 2017,8(2):200-204. doi: 10.4103/ccd.ccd_1192_16.
DOI URL PMID |
[39] |
Daga D, Singh RK, Pal US, et al. Efficacy of oral colchicine with intralesional hyaluronidase or triamcinolone acetonide in the Grade Ⅱ oral submucous fibrosis[J]. Natl J Maxillofac Surg, 2017,8(1):50-54. doi: 10.4103/njms.NJMS_5_17.
DOI URL |
[40] |
Shetty P, Shenai P, Chatra L, et al. Efficacy of spirulina as an antioxidant adjuvant to corticosteroid injection in management of oral submucous fibrosis[J]. Indian J Dent Res, 2013,24(3):347-350.doi: 10.4103/0970-9290.118001.
DOI URL PMID |
[41] |
Dalbeth N, Lauterio TJ, Wolfe HR. Mechanism of action of colchicine in the treatment of gout[J]. Clin Ther, 2014,36(10):1465-1479. doi: 10.1016/j.clinthera.2014.07.017.
DOI URL PMID |
[42] | Krishnamoorthy B, Khan M. Management of oral submucous fibrosis by two different drug regimens: a comparative study[J]. Dent Res J (Isfahan), 2013,10(4):527-532. |
[43] |
Chuang HM, Su HL, Li C, et al. The Role of butylidenephthalide in targeting the microenvironment which contributes to liver fibrosis amelioration[J]. Front Pharmacol, 2016,7:112. doi: 10.3389/fphar.2016.00112.
DOI URL PMID |
[44] |
Lee PH, Chu PM, Hsieh PL, et al. Glabridin inhibits the activation of myofibroblasts in human fibrotic buccal mucosal fibroblasts through TGF-beta/smad signaling[J]. Environ Toxicol, 2018,33(2):248-255. doi: 10.1002/tox.22512.
DOI URL PMID |
[45] |
Fan J, Chen Q, Wei L, et al. Asiatic acid ameliorates CCl4-induced liver fibrosis in rats: involvement of Nrf2/ARE, NF-kappaB/IkappaBalpha, and JAK1/STAT3 signaling pathways[J]. Drug Des Devel Ther, 2018,12:3595-3605. doi: 10.2147/DDDT.S179876.
DOI URL PMID |
[46] |
Adtani PN, Narasimhan M, Punnoose AM, et al. Antifibrotic effect of Centellaasiatica Linn and asiatic acid on arecoline-induced fibrosis in human buccal fibroblasts[J]. J Investig Clin Dent, 2017,8(2). doi: 10.1111/jicd.12208.
DOI URL PMID |
[47] |
Dong SH, Liu YW, Wei F, et al. Asiatic acid ameliorates pulmonary fibrosis induced by bleomycin (BLM) via suppressing pro-fibrotic and inflammatory signaling pathways[J]. Biomed Pharmacother, 2017,89:1297-1309. doi: 10.1016/j.biopha.2017.03.005.
DOI URL PMID |
[48] |
Zheng L, Guan ZJ, Pan WT, et al. Tanshinone suppresses arecoline-induced epithelial-mesenchymal transition in oral submucous fibrosis by epigenetically reactivating the p53 pathway[J]. Oncol Res, 2018,26(3):483-494. doi: 10.3727/096504017X1494182 5760362.
DOI URL PMID |
[49] |
Liu Q, Lu J, Lin J, et al. Salvianolic acid B attenuates experimental skin fibrosis of systemic sclerosis[J]. Biomed Pharmacother, 2019,110:546-553. doi: 10.1016/j.biopha.2018.12.016.
DOI URL PMID |
[50] |
Dai JP, Zhu DX, Sheng JT, et al. Inhibition of Tanshinone IIA, salvianolic acid A and salvianolic acid B on areca nut extract-induced oral submucous fibrosis in vitro[J]. Molecules, 2015,20(4):6794-6807. doi: 10.3390/molecules20046794.
DOI URL PMID |
[51] | 肖益彩, 翦新春, 郑廉, 等. 口腔黏膜下纤维性变病损黏膜下曲安奈德联合丹参酮液注射方法及疗效探讨[J]. 上海口腔医学, 2017,26(2):188-192. doi: 10.19439/j.sjos.2017.02.013. |
Xiao YC, Jian XC, Zheng L, et al. Methods and effects of injection of salvianolic acid B combined with triamcinolone acetonide in the treatment of oral submucous fibrosis[J]. Shanghai J Stomatol, 2017,26(2):188-192. doi: 10.19439/j.sjos.2017.02.013. | |
[52] |
Hsieh YP, Wu KJ, Chen HM, et al. Arecoline activates latent transforming growth factor beta1 via mitochondrial reactive oxygen species in buccal fibroblasts: suppression by epigallocatechin-3-gallate[J]. J Formos Med Assoc, 2018,117(6):527-534. doi: 10.1016/j.jfma.2017.07.003.
DOI URL PMID |
[53] |
Hsieh YP, Chen HM, Chang JZ, et al. Arecoline stimulated early growth response-1 production in human buccal fibroblasts: suppression by epigallocatechin-3-gallate[J]. Head Neck, 2015,37(4):493-497. doi: 10.1002/hed.23614.
DOI URL PMID |
[54] |
Hsieh YP, Chen HM, Lin HY, et al. Epigallocatechin-3-gallate inhibits transforming-growth-factor-beta1-induced collagen synjournal by suppressing early growth response-1 in human buccal mucosal fibroblasts[J]. J Formos Med Assoc, 2017,116(2):107-113. doi: 10.1016/j.jfma.2016.01.014.
DOI URL PMID |
[55] |
Budai MM, Varga A, Milesz S, et al. Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages[J]. Mol Immunol, 2013,56(4):471-479. doi: 10.1016/j.molimm.2013.05.005.
DOI URL PMID |
[56] | Mangaiyarkarasi SP, Manigandan T, Elumalai M, et al. Benefits of Aloe vera in dentistry[J]. J Pharm Bioallied Sci, 2015,7(Suppl1):s255-s259. doi: 10.4103/0975-7406.155943. |
[57] |
Al-Maweri SA, Ashraf S, Lingam AS, et al. Aloe vera in treatment of oral submucous fibrosis: a systematic review and meta-analysis[J]. J Oral Pathol Med, 2019,48(2):99-107.
DOI URL PMID |
[58] |
Deng YT, Chen HM, Cheng SJ, et al. Arecoline-stimulated connective tissue growth factor production in human buccal mucosal fibroblasts: modulation by curcumin[J]. Oral Oncol, 2009,45(9):e99-e105. doi: 10.1111/jop.12789.
DOI URL PMID |
[59] |
Gupta S, Ghosh S, Gupta S, et al. Effect of curcumin on the expression of p53, transforming growth factor-beta, and inducible nitric oxide synthase in oral submucous fibrosis: a pilot study[J]. J Investig Clin Dent, 2017,8(4). doi: 10.1111/jicd.12252.
DOI URL PMID |
[60] |
Al-Maweri SA. Efficacy of curcumin for management of oral submucous fibrosis: a systematic review of randomized clinical trials[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2019,127(4):300-308. doi: 10.1016/j.oooo.2019.01.010.
DOI URL PMID |
[61] |
Piyush P, Mahajan A, Singh K, et al. Comparison of therapeutic response of lycopene and curcumin in oral submucous fibrosis: a randomized controlled trial[J]. Oral Dis, 2019,25(1):73-79. doi: 10.1111/odi.12947.
DOI URL PMID |
[62] |
Saran G, Umapathy D, Misra N, et al. A comparative study to evaluate the efficacy of lycopene and curcumin in oral submucous fibrosis patients: a randomized clinical trial[J]. Indian J Dent Res, 2018,29(3):303-312. doi: 10.4103/ijdr.IJDR_551_16.
DOI URL PMID |
[63] | Ahmed S, Sulaiman SA, Baig AA, et al. Honey as a potential natural antioxidant medicine: an insight into its molecular mechanisms of action[J]. Oxid Med Cell Longev, 2018: 8367846. doi: 10.1155/2018/8367846. |
[64] |
Sa MO, Sa AA, Mahesar AL, et al. Role of honey in modern medicine[J]. Saudi J Biol Sci, 2017,24(5):975-978.
DOI URL PMID |
[65] |
Abd JA, Kasmuri AR, Hadi H. Stingless bee honey, the natural wound healer: a review[J]. Skin Pharmacol Physiol, 2017,30(2):66-75. doi: 10.1016/j.sjbs.2016.12.010.
DOI URL PMID |
[66] | Minden-Birkenmaier BA, Cherukuri K, Smith RA, et al. Manuka honey modulates the inflammatory behavior of a dHL-60 neutrophil model under the cytotoxic limit[J]. Int J Biomater, 2019: 6132581. doi: 10.1155/2019/6132581. |
[67] | Sharma M, Kaur M, Dar MS. Efficacy of turmeric in reducing burning sensation in oral submucous fibrosis: an observational Study[J]. Saudi J Oral Dent Res, 2017,2:271-274. doi: 10.21276/sjodr.2017.2.11.3. |
[68] | Rai A. Honey in oral diseases: ayurvedic and unani perspective[J]. Apither, 2016,1(1):55-56. doi: 10.5455/ja.20160606123350. |
[69] |
Arakeri G, Rai KK, Boraks G, et al. Current protocols in the management of oral submucous fibrosis: an update[J]. J Oral Pathol Med, 2017,46(6):418-423. doi: 10.1111/jop.12583.
DOI URL PMID |
[1] | 肖婷,唐瞻贵. 治疗口腔黏膜下纤维性变常用中药和西药的研究进展[J]. 口腔疾病防治, 2021, 29(11): 771-775. |
[2] | 许斌,毕良佳. 声动力疗法在口腔医学领域的研究进展[J]. 口腔疾病防治, 2020, 28(8): 535-539. |
[3] | 刘传霞,付纪,郝一龙,何虹,陈谦明. 新型冠状病毒肺炎疫情期间口腔黏膜病的管理策略[J]. 口腔疾病防治, 2020, 28(3): 178-183. |
[4] | 童婷,程磊,任彪. 白色念珠菌与口腔潜在恶性病变相关研究进展[J]. 口腔疾病防治, 2020, 28(12): 806-810. |
[5] | 尹丽芬,柳志文,吴昊,凌天牖. 丝聚蛋白在口腔黏膜下纤维性变中的表达[J]. 口腔疾病防治, 2019, 27(9): 557-560. |
[6] | 彭海艳,蒋校文,扶志敏,黄华庆,陈金勇. 直流电药物离子导入曲安奈德治疗口腔黏膜下纤维性变的临床研究[J]. 口腔疾病防治, 2019, 27(10): 638-641. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
本作品遵循Creative Commons Attribution 3.0 License授权许可.