口腔疾病防治 ›› 2021, Vol. 29 ›› Issue (12): 793-800.DOI: 10.12016/j.issn.2096-1456.2021.12.001
收稿日期:
2021-05-06
修回日期:
2021-06-15
出版日期:
2021-12-20
发布日期:
2021-08-17
通讯作者:
胡开进,邓天阁
基金资助:
HU Kaijin(),MA Zhen,WANG Yiming,DENG Tiange(
)
Received:
2021-05-06
Revised:
2021-06-15
Online:
2021-12-20
Published:
2021-08-17
Contact:
Kaijin HU,Tiange DENG
Supported by:
摘要:
创伤性颞下颌关节强直是指外伤引起的髁突与颞骨关节窝之间的纤维性或骨性融合,可导致患者张口受限、咀嚼困难,甚至阻塞性睡眠呼吸暂停低通气综合征。当儿童或青少年发生创伤性颞下颌关节强直,还会导致面部发育不对称、小颌畸形、咬合关系错乱等,严重影响患者身心健康。该病一旦发生则治疗困难、易复发,而且发病机制不清,一直是口腔颌面外科研究的热点和难点。本文结合国内外最新的研究进展,明确创伤性颞下颌关节强直的发病因素,如髁突的损伤、关节盘的损伤或移位、关节窝的损伤以及翼外肌的类牵张成骨作用;对“血肿机化”、“翼外肌类牵张成骨”等发病机制假说进行述评,并结合相关细胞学和分子生物学研究阐述现阶段创伤性颞下颌关节强直的发病机制研究进展。
中图分类号:
胡开进, 马振, 王一名, 邓天阁. 创伤性颞下颌关节强直发病机制研究新进展[J]. 口腔疾病防治, 2021, 29(12): 793-800.
HU Kaijin, MA Zhen, WANG Yiming, DENG Tiange. New progress in the pathogenesis of traumatic temporomandibular joint ankylosis[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(12): 793-800.
[1] | Acri TM, Shin K, Seol D, et al. Tissue engineering for the temporomandibular joint[J]. Adv Healthc Mater, 2019, 8(2):e1801236. doi: 10.1002/adhm.201801236. |
[2] |
Deng TG, Liu CK, Wu LG, et al. Association between maximum mouth opening and area of bony fusion in simulated temporomandibular joint bony ankylosis[J]. Int J Oral Maxillofac Surg, 2020, 49(3):369-376. doi: 10.1016/j.ijom.2019.06.030.
DOI URL |
[3] |
Meng F, Liu Y, Hu K, et al. A comparative study of the skeletal morphology of the temporo-mandibular joint of children and adults[J]. J Postgrad Med, 2008, 54(3):191-194. doi: 10.4103/0022-3859.40960.
URL PMID |
[4] |
Chouinard AF, Kaban LB, Peacock ZS. Acquired abnormalities of the temporomandibular joint[J]. Oral Maxillofac Surg Clin North Am, 2018, 30(1):83-96. doi: 10.1016/j.coms.2017.08.005.
DOI URL |
[5] |
Resnick CM. Temporomandibular joint reconstruction in the growing child[J]. Oral Maxillofac Surg Clin North Am, 2018, 30(1):109-121. doi: 10.1016/j.coms.2017.08.006.
DOI URL |
[6] | Agarwal B, Yadav P, Roychoudhury A, et al. Does bilateral gap arthroplasty increase the severity of obstructive sleep apnea in patients with temporomandibular joint ankylosis?[J]. J Oral Maxillofac Surg, 2021, 79(6):1344. doi: 10.1016/j.joms.2021.01.015. |
[7] |
Yan YB, Zhang Y, Gan YH, et al. Surgical induction of TMJ bony ankylosis in growing sheep and the role of injury severity of the glenoid fossa on the development of bony ankylosis[J]. J Craniomaxillofac Surg, 2013, 41(6):476-486. doi: 10.1016/j.jcms.2012. 03.011.
DOI URL |
[8] |
De Roo N, Van Doorne L, Troch A, et al. Quantifying the outcome of surgical treatment of temporomandibular joint ankylosis: a systematic review and meta-analysis[J]. J Craniomaxillofac Surg, 2016, 44(1):6-15. doi: 10.1016/j.jcms.2015.08.019.
DOI URL |
[9] |
Bathi RJ, Taneja N, Parveen S. Rheumatoid arthritis of TMJ--a diagnostic dilemma?[J]. Dent Update, 2004, 31(3):167-170. doi: 10.12968/denu.2004.31.3.167.
DOI URL |
[10] |
Galié M, Candotto V, Elia G, et al. Temporomandibular joint ankylosis after early mandibular distraction osteogenesis: a new syndrome?[J]. J Craniofac Surg, 2017, 28(5):1185-1190. doi: 10.1097/SCS.0000000000003612.
DOI URL |
[11] |
Movahed R, Mercuri LG. Management of temporomandibular joint ankylosis[J]. Oral Maxillofac Surg Clin North Am, 2015, 27(1):27-35. doi: 10.1016/j.coms.2014.09.003.
DOI URL |
[12] |
Valentini V, Vetrano S, Agrillo A, et al. Surgical treatment of TMJ ankylosis: our experience (60 cases)[J]. J Craniofac Surg, 2002, 13(1):59-67. doi: 10.1097/00001665-200201000-00013.
DOI URL |
[13] |
Ma D, Zhang S, Pang C, et al. The Application of intraoperative computed tomography in surgical management of temporomandibular joint ankylosis[J]. J Oral Maxillofac Surg, 2021, 79(1): 90.e1-90.e7. doi: 10.1016/j.joms.2020.09.002.
DOI URL |
[14] |
Xia L, Zhang Y, An J, et al. Evaluating the remodeling of condyles reconstructed by transport distraction osteogenesis in the treatment of temporomandibular joint ankylosis[J]. J Craniomaxillofac Surg, 2020, 48(5):494-500. doi: 10.1016/j.jcms.2020.03.004.
DOI URL |
[15] |
Xia L, He Y, An J, et al. Condyle-preserved arthroplasty versus costochondral grafting in paediatric temporomandibular joint ankylosis: a retrospective investigation[J]. Int J Oral Maxillofac Surg, 2019, 48(4):526-533. doi: 10.1016/j.ijom.2018.07.018.
DOI URL |
[16] |
Wang HL, Zhang PP, Meng L, et al. Preserving the fibrous layer of the mandibular condyle reduces the risk of ankylosis in a sheep model of intracapsular condylar fracture[J]. J Oral Maxillofac Surg, 2018, 76(9):1951.e1-e24. doi: 10.1016/j.joms.2018.05.01.
DOI URL |
[17] |
Tuncel U, Kostakoglu N, Turan A, et al. The use of temporalis muscle graft, fresh and cryopreserved amniotic membrane in preventing temporomandibular joint ankylosis after discectomy in rabbits[J]. J Craniomaxillofac Surg, 2014, 42(8):1868-1876. doi: 10.1016/j.jcms.2014.07.005.
DOI URL PMID |
[18] |
Zavodovskaya R, Vapniarsky N, Garcia T, et al. Intra- and extra-articular features of temporomandibular joint ankylosis in the cat (felis catus)[J]. J Comp Pathol, 2020, 175:39-48. doi: 10.1016/j.jcpa.2019.12.006.
DOI URL PMID |
[19] |
Liu CK, Meng FW, Tan XY, et al. Clinical and radiological outcomes after treatment of sagittal fracture of mandibular condyle (SFMC) by using occlusal splint in children[J]. Br J Oral Maxillofac Surg, 2014, 52(2):144-148. doi: 10.1016/j.bjoms.2013.10.007.
DOI URL |
[20] |
Vincent AG, Ducic Y, Kellman R. Fractures of the mandibular condyle[J]. Facial Plast Surg, 2019, 35(6):623-626. doi: 10.1055/s-0039-1700888.
DOI URL PMID |
[21] | He D, Ellis E, Zhang Y. Etiology of temporomandibular joint ankylosis secondary to condylar fractures: the role of concomitant mandibular fractures[J]. J Oral Maxillofac Surg, 2008, 66(1):77-84. doi: 10.1016/j.joms.2007.08.013. |
[22] | 邓天阁, 王磊, 刘平, 等. 颞下颌关节强直动物模型中最大张口度与强直严重程度关系研究[J]. 中国实用口腔科杂志, 2020, 13(12):730-737. doi: 10.19538/j.kq.2020.12.006. |
Deng TG, Wang L, Liu P, et al. Correlations between maximum mouth opening and severity of traumatic temporomandibular joint bone ankylosis in the sheep model[J]. Chin J Pract Stomatol, 2020, 13(12):730-737. doi: 10.19538/j.kq.2020.12.006. | |
[23] |
Ouyang N, Zhu X, Li H, et al. Effects of a single condylar neck fracture without condylar cartilage injury on traumatic heterotopic ossification around the temporomandibular joint in mice[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2018, 125(2):120-125. doi: 10.1016/j.oooo.2017.10.008.
DOI URL |
[24] |
Anyanechi CE. Temporomandibular joint ankylosis caused by condylar fractures: a retrospective analysis of cases at an urban teaching hospital in Nigeria[J]. Int J Oral Maxillofac Surg, 2015, 44(8):1027-1033. doi: 10.1016/j.ijom.2015.05.003.
DOI URL |
[25] |
Marji FP, Anstadt E, Davit A, et al. Pediatric mandibular condylar fractures with concomitant cervical spine injury: a treatment protocol for prevention of temporomandibular joint ankylosis[J]. J Craniofac Surg, 2020, 31(3):e248-e250. doi: 10.1097/SCS.0000000000006178.
DOI URL |
[26] | Pihut M, Gorecka M, Ceranowicz P, et al. The efficiency of anterior repositioning splints in the management of pain related to temporomandibular joint disc displacement with reduction[J]. Pain Res Manag, 2018: 9089286. doi: 10.1155/2018/9089286. |
[27] |
Yan G, Zhou Q, Yang M. A new method to reposition the displaced articular disc for a patient with comminuted condylar fracture[J]. J Craniofac Surg, 2019, 30(4):e373-e376. doi: 10.1097/SCS.0000000000005384.
DOI URL |
[28] |
Wang HL, Liu H, Shen J, et al. Removal of the articular fibrous layers with discectomy leads to temporomandibular joint ankylosis[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2019, 127(5):372-380. doi: 10.1016/j.oooo.2018.12.002.
DOI URL |
[29] |
He D, Cai Y, Yang C. Analysis of temporomandibular joint ankylosis caused by condylar fracture in adults[J]. J Oral Maxillofac Surg, 2014, 72(4): 763.e1-9. doi: 10.1016/j.joms.2013.12.015.
DOI URL |
[30] |
He D, Yang X, Wang F, et al. Acute trauma induced disc displacement without reduction and its sequelae[J]. Sci Rep, 2016, 6:32684. doi: 10.1038/srep32684.
DOI URL |
[31] |
Liu CK, Liu P, Meng FW, et al. The role of the lateral pterygoid muscle in the sagittal fracture of mandibular condyle (SFMC) healing process[J]. Br J Oral Maxillofac Surg, 2012, 50(4):356-360. doi: 10.1016/j.bjoms.2011.05.015.
DOI URL |
[32] |
Meng FW, Hu KJ, Kong L, et al. Morphological evaluation of temporomandibular joint after open and closed treatment of type B diacapsular condylar fractures in sheep[J]. Ann Anat, 2009, 191(3):288-293. doi: 10.1016/j.aanat.2008.12.002.
DOI URL |
[33] | Nanthini C, Sathasivasubramanian S, Arunan M. Temporomandibular joint changes in oral submucous fibrosis--a magnetic resonance imaging study[J]. J Clin Exp Dent, 2018, 10(7):e673-e680. doi: 10.4317/jced.54643. |
[34] |
Miyamoto H, Kurita K, Ogi N, et al. Effect of limited jaw motion on ankylosis of the temporomandibular joint in sheep[J]. Br J Oral Maxillofac Surg, 2000, 38(2):148-153. doi: 10.1054/bjom.1999.0206.
DOI URL |
[35] |
Mohanty S, Kohli S, Dabas J, et al. Fate of the coronoid process after coronoidotomy and its effect on the interincisal opening: a clinical and radiologic assessment[J]. J Oral Maxillofac Surg, 2017, 75(6):1263-1273. doi: 10.1016/j.joms.2017.01.012.
DOI URL |
[36] |
Zhu F, Zhi Y, Xu X, et al. Interpositional arthroplasty of post-traumatic temporomandibular joint ankylosis: a modified method[J]. J Craniomaxillofac Surg, 2021, 49(5):373-380. doi: 10.1016/j.jcms.2021.01.032.
DOI URL |
[37] |
Ferretti C, Bryant R, Becker P, et al. Temporomandibular joint morphology following post-traumatic ankylosis in 26 patients[J]. Int J Oral Maxillofac Surg, 2005, 34(4):376-381. doi: 10.1016/j.ijom.2004.09.003.
DOI URL |
[38] |
Yan YB, Duan DH, Zhang Y, et al. The development of traumatic temporomandibular joint bony ankylosis: a course similar to the hypertrophic nonunion?[J]. Med Hypotheses, 2012, 78(2):273-276. doi: 10.1016/j.mehy.2011.10.044.
DOI URL |
[39] |
Meng FW, Zhao JL, Hu KJ, et al. A new hypojournal of mechanisms of traumatic ankylosis of temporomandibular joint[J]. Med Hypotheses, 2009, 73(1):92-93. doi: 10.1016/j.mehy.2009.01.024.
DOI URL |
[40] |
Wu D, Yang XJ, Cheng P, et al. The lateral pterygoid muscle affects reconstruction of the condyle in the sagittal fracture healing process: a histological study[J]. Int J Oral Maxillofac Surg, 2015, 44(8):1010-1015. doi: 10.1016/j.ijom.2015.02.004.
DOI URL |
[41] |
Deng TG, Liu CK, Liu P, et al. Influence of the lateral pterygoid muscle on traumatic temporomandibular joint bony ankylosis[J]. BMC Oral Health, 2016, 16(1):62. doi: 10.1186/s12903-016-0220-1.
DOI URL |
[42] |
李国威, 刘昌奎, 刘平, 等. 大鼠三叉神经运动核-翼外肌投射通路的解剖学研究[J]. 中华口腔医学杂志, 2020, 55(4):259-263. doi: 10.3760/cma.j.cn112144-20191129-00427.
DOI URL PMID |
Li GW, Liu CK, Liu P, et al. Anatomical study of rat trigeminal motor nucleus-lateral pterygoid muscle projection pathway[J]. Chin J Stomatol, 2020, 55(4):259-263. doi: 10.3760/cma.j.cn112144-20191129-00427.
DOI URL PMID |
|
[43] |
Yan YB, Liang SX, Shen J, et al. Current concepts in the pathogenesis of traumatic temporomandibular joint ankylosis[J]. Head Face Med, 2014, 10:35. doi: 10.1186/1746-160X-10-35.
DOI URL |
[44] |
Pajarinen J, Lin T, Gibon E, et al. Mesenchymal stem cell-macrophage crosstalk and bone healing[J]. Biomaterials, 2019, 196:80-89. doi: 10.1016/j.biomaterials.2017.12.025.
DOI URL PMID |
[45] |
Gibon E, Lu L, Goodman SB. Aging, inflammation, stem cells, and bone healing[J]. Stem Cell Res Ther, 2016, 7:44. doi: 10.1186/s13287-016-0300-9.
DOI URL |
[46] |
He LH, Xiao E, Duan DH, et al. Osteoclast deficiency contributes to temporomandibular joint ankylosed bone mass formation[J]. J Dent Res, 2015, 94(10):1392-1400. doi: 10.1177/0022034515 599149.
DOI URL PMID |
[47] |
Kitaori T, Ito H, Schwarz EM, et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model[J]. Arthritis Rheum, 2009, 60(3):813-823. doi: 10.1002/art.24330.
DOI URL |
[48] |
Shinohara K, Greenfield S, Pan H, et al. Stromal cell-derived factor-1 and monocyte chemotactic protein-3 improve recruitment of osteogenic cells into sites of musculoskeletal repair[J]. J Orthop Res, 2011, 29(7):1064-1069. doi: 10.1002/jor.21374.
DOI URL PMID |
[49] |
Liang SX, Wang HL, Zhang PP, et al. Differential regulation of blood vessel formation between traumatic temporomandibular joint fibrous ankylosis and bony ankylosis in a sheep model[J]. J Craniomaxillofac Surg, 2019, 47(11):1739-1751. doi: 10.1016/j.jcms.2019.07.032.
DOI URL PMID |
[50] |
Yahara Y, Ma X, Gracia L, et al. Monocyte/macrophage lineage cells from fetal erythromyeloid progenitors orchestrate bone remodeling and repair[J]. Front Cell Dev Biol, 2021, 9:622035. doi: 10.3389/fcell.2021.622035.
DOI URL |
[51] |
Porto GG, Vasconcelos BC, Fraga SN, et al. Development of temporomandibular joint ankylosis in rats using stem cells and bone graft[J]. Int J Oral Maxillofac Surg, 2011, 40(12):1414-1420. doi: 10.1016/j.ijom.2011.07.910.
DOI URL |
[52] |
Brylka LJ, Schinke T. Chemokines in physiological and pathological bone remodeling[J]. Front Immunol, 2019, 10:2182. doi: 10.3389/fimmu.2019.02182.
DOI URL PMID |
[53] |
Huang K, Sun YQ, Chen XF, et al. Psoralen, a natural phytoestrogen, improves diaphyseal fracture healing in ovariectomized mice: a preliminary study[J]. Exp Ther Med, 2021, 21(4):368. doi: 10.3892/etm.2021.9799.
DOI URL PMID |
[54] |
Gerstenfeld LC, Sacks DJ, Pelis M, et al. Comparison of effects of the bisphosphonate alendronate versus the RANKL inhibitor denosumab on murine fracture healing[J]. J Bone Miner Res, 2009, 24(2):196-208. doi: 10.1359/jbmr.081113.
DOI URL PMID |
[55] |
Chen W, Gao B, Hao L, et al. The silencing of cathepsin K used in gene therapy for periodontal disease reveals the role of cathepsin K in chronic infection and inflammation[J]. J Periodontal Res, 2016, 51(5):647-660. doi: 10.1111/jre.12345.
DOI URL PMID |
[56] |
Muire PJ, Mangum LH, Wenke JC. Time course of immune response and immunomodulation during normal and delayed healing of musculoskeletal wounds[J]. Front Immunol, 2020, 11:1056. doi: 10.3389/fimmu.2020.01056.
DOI URL |
[57] |
Wang X, Chen X, Lu L, et al. Alcoholism and osteoimmunology[J]. Curr Med Chem, 2021, 28(9):1815-1828. doi: 10.2174/1567201816666190514101303.
DOI URL |
[58] |
Xing Z, Lu C, Hu D, et al. Multiple roles for CCR2 during fracture healing[J]. Dis Model Mech, 2010, 3(7/8):451-458. doi: 10.1242/dmm.003186.
DOI URL |
[59] |
Zhao L, Xiao E, He L, et al. Reducing macrophage numbers alleviates temporomandibular joint ankylosis[J]. Cell Tissue Res, 2020, 379(3):521-536. doi: 10.1007/s00441-019-03087-7.
DOI URL PMID |
[60] |
Jiang C, Luo P, Li X, et al. Nrf2/ARE is a key pathway for curcumin-mediated protection of TMJ chondrocytes from oxidative stress and inflammation[J]. Cell Stress Chaperones, 2020, 25(3):395-406. doi: 10.1007/s12192-020-01079-z.
DOI URL |
[61] |
Robinson JL, Johnson PM, Kister K, et al. Estrogen signaling impacts temporomandibular joint and periodontal disease pathology[J]. Odontology, 2020, 108(2):153-165. doi: 10.1007/s10266-019-00439-1.
DOI URL |
[62] |
Fajardo M, Liu CJ, Egol K. Levels of expression for BMP-7 and several BMP antagonists may play an integral role in a fracture nonunion: a pilot study[J]. Clin Orthop Relat Res, 2009, 467(12):3071-3078. doi: 10.1007/s11999-009-0981-9.
DOI URL |
[63] |
Yan YB, Li JM, Xiao E, et al. A pilot trial on the molecular pathophysiology of traumatic temporomandibular joint bony ankylosis in a sheep model. Part II: the differential gene expression among fibrous ankylosis, bony ankylosis and condylar fracture[J]. J Craniomaxillofac Surg, 2014, 42(2):e23-e28. doi: 10.1016/j.jcms.2013.04.008.
DOI URL |
[64] | Zhang J, Sun X, Jia S, et al. The role of lateral pterygoid muscle in the traumatic temporomandibular joint ankylosis: a gene chip based analysis[J]. Mol Med Rep, 2019, 19(5):4297-4305. doi: 10.3892/mmr.2019.10078. |
[65] |
Pilmane M, Skagers A. Growth factors, genes, bone proteins and apoptosis in the temporomandibular joint (TMJ) of children with ankylosis and during disease recurrence[J]. Stomatologija, 2011, 13(3):96-101.
PMID |
[66] |
Meng FW, Liu YP, Hu KJ, et al. Use of a temporary screw for alignment and fixation of sagittal mandibular condylar fractures with lateral screws[J]. Int J Oral Maxillofac Surg, 2010, 39(6):548-553. doi: 10.1016/j.ijom.2010.01.018.
DOI URL |
[1] | 宋冰清,任彪,程磊. 具核梭杆菌与牙周炎关系的研究进展[J]. 口腔疾病防治, 2021, 29(8): 557-561. |
[2] | 陈泽涛,林义雄,杨杰婷,黄宝鑫,陈卓凡. 基于“免疫微环境调控”的屏障膜研发理念[J]. 口腔疾病防治, 2021, 29(8): 505-514. |
[3] | 左新慧,李君,韩祥祯,刘小元,何惠宇. 低氧诱导因子-1α对骨髓间充质干细胞成骨分化与血管生成相关因子的影响[J]. 口腔疾病防治, 2021, 29(7): 449-455. |
[4] | 赖展文,胡子洋,潘笑,郝燕清,林梓桐. 前牙开牙合患者颞下颌关节间隙及髁突形态的锥形束CT评价[J]. 口腔疾病防治, 2021, 29(7): 468-473. |
[5] | 王科,彭国光,何善志,谭玉莲. 克氏针治疗下颌骨髁突矢状骨折13例回顾性分析[J]. 口腔疾病防治, 2021, 29(7): 474-478. |
[6] | 王安训. 髁突良性肥大的诊断和治疗[J]. 口腔疾病防治, 2021, 29(6): 361-367. |
[7] | 李沛汉,郎凯,宋文. 基于介孔硅的姜黄素-siRNA共递送系统构建及其对巨噬细胞M2型极化的影响[J]. 口腔疾病防治, 2021, 29(5): 306-313. |
[8] | 周安琪,刘佳怡,贾懿楠,向琳. Hippo-YAP信号轴介导骨免疫调节种植体骨结合的研究进展[J]. 口腔疾病防治, 2021, 29(5): 334-339. |
[9] | 潘英潇,郭大伟,李新,卢恕来. 口腔扁平苔藓相关microRNAs的研究进展[J]. 口腔疾病防治, 2021, 29(3): 206-210. |
[10] | 颜杉钰,梅宏翔,李娟. 间充质干细胞迁移在骨组织损伤修复中的作用[J]. 口腔疾病防治, 2021, 29(12): 854-858. |
[11] | 黎祺, 王贺, 黄紫君, 韩倩倩. 雌激素对牙周膜细胞修复重建牙周组织调节机制的研究进展[J]. 口腔疾病防治, 2021, 29(11): 787-792. |
[12] | 黄泽伦,薛智谦,顾瑜. 低年级大学生颞下颌关节紊乱病咬合异常因素的logistic回归分析[J]. 口腔疾病防治, 2021, 29(1): 45-49. |
[13] | 李洁婷,欧阳瑾. 肉芽肿性唇炎的诊治体会及文献复习[J]. 口腔疾病防治, 2020, 28(7): 449-452. |
[14] | 张宏旗,李晓箐,孟玉坤. 口腔治疗中不同颌位与髁突位置[J]. 口腔疾病防治, 2020, 28(6): 399-403. |
[15] | 邹晓龙,陈媛,王艳,王建涛. 放化疗性口腔黏膜炎动物模型研究进展[J]. 口腔疾病防治, 2020, 28(5): 322-326. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
本作品遵循Creative Commons Attribution 3.0 License授权许可.