[1] |
Zhao X, Sun S, Zeng X , et al. Expression profiles analysis identifies a novel three-mRNA signature to predict overall survival in oral squamous cell carcinoma[J]. Am J Cancer Res, 2018,8(3):450-461.
URL
PMID
|
[2] |
赵思语, 欧阳少波, 王军 , 等. 口腔鳞状细胞癌组织中环状RNA的差异表达谱分析[J]. 口腔疾病防治, 2018,26(2):83-89. doi: 10.12016/j.issn.2096-1456.2018.02.003.
|
|
Zhao SY, Ouyang SB, Wang J , et al. Differential expression of circular RNA in oral squamous cell carcinoma[J]. J Prev Treat Stomatol Dis, 2018,26(2):83-89. doi: 10.12016/j.issn.2096-1456.2018.02.003.
|
[3] |
Deb B, Sengupta P, Sambath J , et al. Bioinformatics analysis of global proteomic and phosphoproteomic data sets revealed activation of NEK2 and AURKA in cancers[J]. Biomolecules, 2020,10(2):237-252. doi: 10.3390/biom10020237.
DOI
URL
|
[4] |
Zheng JW, Yang Y, Yang S , et al. Gene microarray analysis revealed a potential crucial gene RACK1 in oral squamous cell carcinoma (OSCC)[J]. Anim Cells Syst (Seoul), 2018,22(2):82-91. doi: 10.1080/19768354.2018.1443493.
DOI
URL
|
[5] |
Zhang X, Feng H, Li D , et al. Identification of differentially expressed genes induced by aberrant methylation in oral squamous cell carcinomas using integrated bioinformatic analysis[J]. International journal of molecular sciences, 2018,19(6):1698-1713. doi: 10.3390/ijms19061698.
DOI
URL
|
[6] |
Jeyaprakash AA, Klein UR, Lindner D , et al. Structure of a Survivin-Borealin-INCENP core complex reveals how chromosomal passengers travel together[J]. Cell, 2007,131(2):271-285. doi: 10.1016/j.cell.2007.07.045.
DOI
URL
PMID
|
[7] |
Li DY, Hu CH, Li HB . Survivin as a novel target protein for reducing the proliferation of cancer cells[J]. Biomed Rep, 2018,8(5):399-406. doi: 10.3892/br.2018.1077.
DOI
URL
PMID
|
[8] |
Troiano G, Guida A, Aquino G , et al. Integrative histologic and bioinformatics analysis of birc5/survivin expression in oral squamous cell carcinoma[J]. Int J Mol Sci, 2018,19(9):2664-2677. doi: 10.3390/ijms19092664.
DOI
URL
|
[9] |
Polepalli S, George SM, Vidya RVS , et al. Role of UHRF1 in malignancy and its function as a therapeutic target for molecular docking towards the SRA domain[J]. Int J Biochem Cell Biol, 2019,114:105558. doi: 10.1016/j.biocel.2019.06.006.
DOI
URL
PMID
|
[10] |
Zhou L, Shang Y, Jin Z , et al. UHRF1 promotes proliferation of gastric cancer via mediating tumor suppressor gene hypermethylation[J]. Cancer Biol Ther, 2015,16(8):1241-1251. doi: 10.1080/15384047.2015.1056411.
DOI
URL
PMID
|
[11] |
Baroudi ME, Machiels JP, Schmitz S . Expression of SESN1, UHRF1BP1, and miR-377-3p as prognostic markers in mutated TP53 squamous cell carcinoma of the head and neck[J]. Cancer Biol Ther, 2017,18(10):775-782. doi: 10.1080/15384047.2017. 1373212.
DOI
URL
PMID
|
[12] |
Guo H, Zhang L . MicroRNA-30a suppresses papillary thyroid cancer cell proliferation, migration and invasion by directly targeting E2F7[J]. Exp Ther Med, 2019,18(1):209-215. doi: 10.3892/etm.2019.7532.
DOI
URL
PMID
|
[13] |
Hazar-Rethinam M, Long LM, Gannon MO , et al. RacGAP1 is a novel downstream effector of E2F7-dependent resistance to doxorubicin and is prognostic for overall survival in squamous cell carcinoma[J]. Mol Cancer Ther, 2015,14(8):1939-1950. doi: 10.1158/1535-7163.MCT-15-0076.
DOI
URL
PMID
|
[14] |
Saen-Ponce N, Pillay R, De Long LM , et al. Targeting the XPO1-dependent nuclear export of E2F7 reverses anthracycline resistance in head and neck squamous cell carcinomas[J]. Sci Transl Med, 2018, 10(447): eaar7223. doi: 10.1126/scitranslmed.aar7223.
DOI
URL
PMID
|
[15] |
Lim N, Townsend PA . Cdc6 as a novel target in cancer: oncogenic potential, senescence and subcellular localisation[J]. Int J Cancer, 2020,147(6):1528-1534. doi: 10.1126/scitranslmed.aar7223.
DOI
URL
PMID
|
[16] |
Feng CJ, Lu XW, Luo DY , et al. Knockdown of Cdc6 inhibits proliferation of tongue squamous cell carcinoma Tca8113 cells[J]. Technol Cancer Res Treat, 2013,12(2):173-181. doi: 10.7785/tcrt.2012.500302.
DOI
URL
PMID
|
[17] |
Feng CJ, Li HJ, Li JN , et al. Expression of Mcm7 and Cdc6 in oral squamous cell carcinoma and precancerous lesions[J]. Anticancer Res, 2008,28(6A):3763-3769.
URL
PMID
|
[18] |
Huang C, Wang L, Song H , et al. Interactive effects of AURKA polymorphisms with smoking on the susceptibility of oral cancer[J]. Artif Cells Nanomed Biotechnol, 2019,47(1):2333-2337. doi: 10.1080/21691401.2019.1601101.
DOI
URL
PMID
|
[19] |
Yang Y, Ding L, Zhou Q , et al. Silencing of AURKA augments the antitumor efficacy of the AURKA inhibitor MLN8237 on neuroblastoma cells[J]. Cancer Cell Int, 2020,20:9. doi: 10.1186/s12935-019-1072-y.
DOI
URL
PMID
|
[20] |
Mehra R, Serebriiskii IG, Burtness B , et al. Aurora kinases in head and neck cancer[J]. Lancet Oncol, 2013,14(10):e425-e435. doi: 10.1016/S1470-2045(13)70128-1.
|
[21] |
Bertran-Alamillo J, Cattan V, Schoumacher M , et al. AURKB as a target in non-small cell lung cancer with acquired resistance to anti-EGFR therapy[J]. Nat Commun, 2019,10(1):1812. doi: 10.1038/s41467-019-09734-5.
DOI
URL
PMID
|
[22] |
Togar T, Desai S, Mishra R , et al. Identifying cancer driver genes from functional genomics screens[J]. Swiss Med Wkly, 2020,150:w20195. doi: 10.4414/smw.2020.20195.
DOI
URL
PMID
|
[23] |
Boeckx C, Op de Beeck K, Wouters A , et al. Overcoming cetuximab resistance in HNSCC: the role of AURKB and DUSP proteins[J]. Cancer Lett, 2014,354(2):365-377. doi: 10.1016/j.canlet.2014.08.039.
DOI
URL
|