Journal of Prevention and Treatment for Stomatological Diseases ›› 2016, Vol. 24 ›› Issue (11): 645-650.doi: 10.12016/j.issn.2096-1456.2016.11.005

• Basic Study • Previous Articles     Next Articles

Study on the corrosion resistance of composite wire in artificial saliva containing enzyme

ZHANG Chao1,XIAO Yao-mu1,LIU Chu-feng1,YU Rui-xue1,LIU Cong-hua1,CUI Ye1,LIU Xian-wen2   

  1. 1. Department of Orthodontics, Guangdong Provincial Stomatological Hospital & the Affiliated Stomatological Hospital of Southern Medical University, Guangzhou 510280, China
    2. Department of Oral and Maxillofacial Surgery, Guangdong Provincial Stomatological Hospital & the Affiliated Stomatological Hospital of Southern Medical University, Guangzhou 510280, China
  • Received:2016-08-22 Revised:2016-09-02 Online:2016-11-20 Published:2016-11-20
  • Contact: Xian-wen LIU

Abstract:

Objective To explore the anti corrosion ability of laser welded composite wire in artificial saliva containing salivary amylase and pancreatic amylase, and to compare the effect of two kinds of amylase on corrosion resistance of wire and its mechanism.Methods The corrosion resistance of composite wire was evaluated by electrochemical polarization and immersion test. The soluble corrosion products after 28 d immersion in artificial saliva were detected by plasma spectrometer. The surface morphology was analyzed by scanning electron microscope, energy spectrometer and atomic force microscope.Results Salivary amylase and pancreatic amylase could improve the corrosion resistance of the composite arch wire; the same isomerase would have different effects on the same alloy corrosion resistance.Conclusion When the new metal biological material is applied to the oral cavity, the amylase may have influence on its corrosion resistance.

Key words: Copper, Corrosion, Interface, Pancreatic amylase, Salivary amylase

CLC Number: 

  • R783.5

Figure 1

SEM surface morphologies (a) and EDS analysis of the laser-welded composite arch wire (b) and schematic diagram of laser welding (c)"

Figure 2

Polarization curves for composite arch wires in different solutions"

Table 1

The pitting potential (Epit), corrosion potential (Ecorr), and corrosion current density (icorr) values calculated from potential dynamic polarization curves"

溶液类型 Epit(mV/SCE) Ecorr(mV/SCE) icorr(μA/cm2
单纯人工唾液组 102 ± 9 -572 ± 20 1.02 ± 0.09
唾液淀粉酶组 89 ± 10 -258 ± 11 0.91 ± 0.03
胰淀粉酶组 114 ± 12 -246 ± 19 0.05 ± 0.009

Figure 3

SEM interface surface morphologies of composite arch wires immersed in different artificial saliva soliutions"

Figure 4

The microscopic morphologies scanned by AFM of composite arch wires immersed in different artificial saliva soliutions"

Table 2

Copper element release and weight loss after 28 d immersion"

溶液类型 铜离子析出量 (μg) 失重值 (%)
单纯人工唾液组 0.03 ± 0.007 0.075 ± 0.003
唾液淀粉酶组 0.07 ± 0.006 0.052 ± 0.007
胰淀粉酶组 0.06 ± 0.009 0.049 ± 0.005
[1] Zhang C, Sun X . Susceptibility to stress corrosion of laser-welded composite arch wire in acid artificial saliva[J]. Adv Mater Sci Eng, 2013,46(13):171-177.
[2] Zhang C, Sun X, Hou X , et al. The corrosion resistance of composite arch wire laser-welded by NiTi shape memory alloy and stainless steel wires with Cu interlayer in artificial saliva with protein[J]. Inter J Med Sci, 2013,10(8):1068-1072.
doi: 10.7150/ijms.5878
[3] Zhang C, Zhao S, Sun X , et al. Corrosion of laser-welded NiTi shape memory alloy and stainless steel composite wires with a copper interlayer upon exposure to fluoride and mechanical stress[J]. Corros Sci, 2014,82(5):404-409.
doi: 10.1016/j.corsci.2014.01.040
[4] Zhang C, Sun X, Zhao S , et al. Susceptibility to corrosion and in vitro biocompatibility of a laser-welded composite orthodontic arch wire[J]. Ann Biomed Eng, 2014,42(1):222-230.
doi: 10.1007/s10439-013-0885-4
[5] Nelson SK, Wataha JC, Neme AML , et al. Cytotoxicity of dental casting alloys pretreated with biologic solutions[J]. J Prosthet Dent, 1999,81(5):591-596.
doi: 10.1016/S0022-3913(99)70215-5
[6] 林诗尧, 刘朗, 李洁银 , 等. 热处理对含钛镍铬合金、镍铬合金金瓷结合强度的影响[J]. 口腔疾病防治, 2016,24(6) 331-335.
[7] Williams RL, Brown SA, Merritt K . Electrochemical studies on the influence of proteins on the corrosion of implant alloys[J]. Biomaterials, 1988,9(2):181-186.
doi: 10.1016/0142-9612(88)90119-6
[8] Yang J, Black J . Competitive binding of chromium, cobalt and nickel to serum proteins[J]. Biomaterials, 1994,15(4):262-268.
doi: 10.1016/0142-9612(94)90049-3
[9] Clark GCF, Williams D F . The effects of proteins on metallic corrosion[J]. J Biomed Mater Res, 1982,16(2):125-134.
doi: 10.1002/(ISSN)1097-4636
[10] Busscher H J, Rinastiti M, Siswomihardjo W , et al. Biofilm formation on dental restorative and implant materials[J]. J Dent Res, 2010,89(7):657-665.
doi: 10.1177/0022034510368644
[11] Cecilia E Christersson, Robert G Dunford . Salivary film formation on defined solid surfaces in the absence and presence of microorganisms[J]. Biofouling, 1991,3(3):237-250.
doi: 10.1080/08927019109378178
[12] Brayer G D, Sidhu G, Maurus R , et al. Subsite mapping of the human pancreatic alpha-amylase active site through structural, kinetic, and mutagenesis techniques.[J]. Biochemistry, 2000,39(16):4778-4791.
doi: 10.1021/bi9921182
[13] Gusman H, Lendenmann U, Grogan J , et al. Is salivary histatin 5 a metallopeptide?[J]. Biochimica Et Biophysica Acta, 2001,1545(1/2):86-95.
doi: 10.1016/S0167-4838(00)00265-X
[14] Wu A M, Csako G, Herp A . Structure, biosynjournal, and function of salivary mucins[J]. Mol Cell Biochem, 1994,137(1):39-55.
doi: 10.1007/BF00926038
[15] Melino S, Gallo M, Trotta E , et al. Metal-binding and nuclease activity of an antimicrobial peptide analogue of the salivary histatin 5[J]. Biochemistry, 2006,45(45):15373-15383.
doi: 10.1021/bi0615137
[16] Baker E N, Baker H M . A structural framework for understanding the multifunctionalcharacter of lactoferrin[J]. Biochimie, 2009,91(1):3-10.
doi: 10.1016/j.biochi.2008.05.006
[17] Svare CW, Belton G, Korostoff E . The role of organics in metallic passivation[J]. J Biomed Mater Res, 1970,4(3):457-67.
doi: 10.1002/(ISSN)1097-4636
[18] Fejerskov O, Kidd EAM . Dental caries: the disease and its clinical management[J]. Eur J Dent Edu, 2003,8(3):80-86.
[19] Kolenbrander PE . Oral microbial communities: biofilms, interactions, and genetic systems[J]. Annu Rev Microbiol, 2000,54(1):413-437.
doi: 10.1146/annurev.micro.54.1.413
[20] Hannig M, Hannig C , Does a biofilm free of bacteria, exist in situ?[J]. J Parodontol Implantol Orale, 2007,26(1):187-200.
[21] Granger DA, Kivlighan KT, El-Sheikh M , et al. Salivary α-amylase in biobehavioral research[J]. Annals of the New York Academy of Sciences, 2007,1098(98):122-144.
doi: 10.1196/annals.1384.008
[22] Linden A, Mayans O, Meyerklaucke W , et al. Differential regulation of a hyperthermophilic alpha-amylase with a novel (Ca, Zn) two-metal center by zinc[J]. J BiolChem, 2003,278(11):9875-9884.
[23] Hong JH, Duncan SE, Dietrich AM , et al. Interaction of copper and human salivary proteins.[J]. J Agric Food Chem, 2009,57(15):6967-6975.
doi: 10.1021/jf804047h
[24] Nomura K, Ohta H, Takagi A , et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors[J]. Nature, 2004,432(7016):488-492.
[25] Li H, Sun D, Dong P , et al. Analysis and prevention of cracks in laser-welded joint of TiNi shape memory alloy and stainless steel[J]. Hanjie Xuebao/transactions of the China Welding Institution, 2012,33(12):41-44.
[26] Li H, Sun D, Gu X , et al. Effects of the thickness of Cu filler metal on the microstructure and properties of laser-welded TiNi alloy and stainless steel joint[J]. Mater Des, 2013,50(17):342-350.
doi: 10.1016/j.matdes.2013.03.014
[27] Soenen S J H, Himmelreich U, Nuytten N , et al. Cytotoxic effects of iron oxide nanoparticles and implications for safety in celllabelling[J]. Biomaterials, 2011,32(1):195-205.
doi: 10.1016/j.biomaterials.2010.08.075
[28] Teughels W, Assche N V, Sliepen I , et al. Effect of material characteristics and/or surface topography on biofilm development[J]. Clin Oral Implants Res, 2006,17(S2):68-81.
doi: 10.1111/clr.2006.17.issue-s2
[29] Cai K, Bossert J, Jandt K D . Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation?[J]. Colloids Surf B Biointerfaces, 2006,49(2):136-144.
doi: 10.1016/j.colsurfb.2006.02.016
[30] Schmidt DR, Waldeck H, Kao WJ . Protein Adsorption to Biomaterials[M]// Biological Interactions on Materials Surfaces. NewYork: Springer US, 2009: 1-18.
[31] Quinn A, Mantz H, Jacobs K , et al. Protein adsorption kinetics in different surface potentials[J]. Epl, 2008,81(5):15-18.
[32] Sallam SM, Tohami KM, Sallam AM , et al. The influence of chromium ions on the growth of the calcium hydroxyapatite crystal[J]. J Biol Phys Chem, 2012,3(4):283-286.
[33] Miyake N, Miura T, Sato T , et al. Effect of zeta potentials on bovine serum albumin adsorption on crown composite resin surfaces in vitro[J]. J Biomed Sci Eng, 2013,06(3):273-276.
doi: 10.4236/jbise.2013.63034
[34] Jamroziak K, Jargulinski W . Electrical double layer and adhesive force in fatigue strength of metals coated with plastics[J]. Arch Mater SciEng, 2009,36(2):82-88.
[35] Baron A, Simka W, Nawrat G , et al. Electropolishing and chemical passivation of austenitic steel[J]. J Achieve Materi Manufac Eng, 2008,31(2):197-202.
[36] Dahman Y, Jayasuriya KE . Preliminary study of binary protein adsorption system and potential bioseparation under homogeneous field of shear in airlift biocontactor[J]. Adv Biosci Biotechnol, 2013,4(6):710-718.
doi: 10.4236/abb.2013.46094
[37] Carugo O . Isoelectric points of multi-domain proteins[J]. Bioinformation, 2007,2(3):101-104.
doi: 10.6026/bioinformation
[38] Dominique C, Pierre-Alain G, Marc B . Understanding small biomolecule-biomaterial interactions: a review of fundamental theoretical and experimental approaches for biomolecule interactions with inorganic surfaces[J]. J Biomed Mater Res Part A, 2013,101(4):1210-1222.
[39] Wei Q, Becherer T, Angioletti-Uberti S , et al. Chem inform abstract: protein interactions with polymer coatings and biomaterials[J]. Angew Chem Int Ed, 2014,53(31):8004-8031.
doi: 10.1002/anie.201400546
[40] Miklos A C, Li C, Sorrell C D , et al. An upper limit for macromolecular crowding effects[J]. BMC Biophysics, 2011,4(6):420-433.
[41] Andersonwile AM, Wile BM, Wen Q , et al. Corrosion at the polymer-metal interface in artificial seawater solutions[J]. Int J Corros, 2012,2012(3):1-8.
[42] Kohavi D, Badihi L, Rosen G , et al. An in vivo method for measuring the adsorption of plasma proteins to titanium in humans[J]. Biofouling, 2013,29(10):1215-1224.
doi: 10.1080/08927014.2013.834332
[43] Merritt K, Brown SA, Sharkey NA . Blood distribution of nickel, cobalt, and chromium following intramuscular injection into hamster[J]. J Biomed Mater Res, 1984,18(9):991-1004.
doi: 10.1002/(ISSN)1097-4636
[1] CUI Ye,HUANG Ziru,WANG Chunlin,LIU Conghua,ZHANG Chao. Effect of three kinds of medium molecular weight proteins on the corrosion resistance of Ni-Ti and stainless steel arch wires [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(2): 83-89.
[2] LI Shanshan,CHU Fuhang,MO Hongbing. Effect of dentin exposure on the shear bond strength of cast porcelain veneers [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(2): 90-94.
[3] Jia-jun LIU, Yu-kun MENG. Influence of different heat treatments on the corrosion behavior of a new type of high palladium dental alloy [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(2): 80-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
This work is licensed under a Creative Commons Attribution 3.0 License.