Periodontal Medicine
XU Zhonghan, YAO Yujie, WANG Xinyue, SONG Shiyuan, BAO Jun, YAN Fuhua, TONG Xin, LI Lili
Objective To investigate the role of butyric acid-producing bacteria in long bone homeostasis in mice with periodontitis under a high-fat/high-sugar diet and to provide new insights for the prevention and treatment of periodontitis and related bone metabolic diseases. Methods This study has been approved by the Animal Welfare and Ethics Committee of the Experimental Animal Center. Initially, 14 mice were randomly divided into the CON group (the control group) and the LIG group (the periodontitis group). Mice in the LIG group had experimental periodontitis induced by ligating the second maxillary molars bilaterally and were fed a high-fat and high-sugar diet. After 8 weeks, samples were collected. Micro-computed tomography (Micro-CT) was used to analyze alveolar bone resorption and various parameters of the proximal tibia trabecular bone, including bone mineral density (BMD), bone volume per tissue volume (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), and trabecular separation (Tb.Sp). After decalcification, hematoxylin and eosin (HE) staining was performed on maxillary bone sections to assess periodontal tissue inflammation and connective tissue destruction. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect related genes in the distal femur and proximal tibia bone tissues, including osteocalcin (OCN), osteogenic transcription factor (Osterix), osteoprotegerin (OPG), tartrate resistant acid phosphatase (TRAP), osteoclast-associated receptor (OSCAR), receptor activator of nuclear factor kappa-B (RANK), and receptor activator of nuclear factor kappa-B ligand (RANK-L). Subsequently, the other 28 mice were randomly divided into the CON group (the control group), LIG group (the periodontitis group), CON + butyric acid-producing bacteria (BP) group, and LIG + BP group. The breeding, sampling, and sample detection methods remained the same. Finally, the other 28 mice were randomly divided into the CON group (the control group), LIG group (the periodontitis group), CON + sodium butyrate (SB) group, and LIG + SB group. The breeding, sampling, and sample detection methods remained the same. Results ①Periodontitis modeling was successful. Compared with the CON group, the LIG group exhibited significant alveolar bone resorption of the maxillary second molar, aggravated periodontal tissue inflammation, and connective tissue destruction. ②Periodontitis exacerbated long bone resorption in mice fed a high-fat high-sugar diet. Compared with the CON group, the LIG group had significantly lower BMD, BV/TV, Tb.N, and Tb.Th (P<0.05), and significantly higher Tb.Sp (P<0.05). HE staining of the proximal tibia showed that the trabeculae in the LIG group were sparse and disordered, with some areas showing fractures or dissolution. The expression of osteoblast markers (OCN, Osterix, OPG) was significantly lower in the LIG group (P<0.05), while the expression of the osteoclast marker TRAP showed an increasing trend (P>0.05). The ratio of RANK-L/OPG was significantly higher in the LIG group compared with the CON group (P<0.05). ③ Supplementation with butyric acid-producing bacteria alleviates periodontitis-induced disruption of long bone homeostasis in mice fed a high-fat/high-sugar diet. Compared with the LIG group, BMD and Tb.Th were significantly higher in the LIG + BP group. HE staining of the proximal tibia showed that bone resorption was mitigated in the LIG + BP group compared with the LIG group. The expression of OCN and Osterix was significantly higher in the LIG + BP group, while the expression of osteoclast-specific genes (OSCAR, RANK, RANK-L) was significantly lower (P<0.05). ④ Supplementation with butyrate alleviates periodontitis-induced disruption of long bone homeostasis in mice fed a high-fat/high-sugar diet. Compared with the LIG group, BV/TV and Tb.N were significantly higher in the LIG + SB group, and Tb.Sp was significantly lower (P<0.05). HE staining of the proximal tibia showed that bone resorption was mitigated in the LIG + SB group compared with the LIG group. The expression of Osterix, OPG, OSCAR, TRAP, and RANK was significantly lower in the LIG + SB group compared with the LIG group (P<0.05). Conclusion Periodontitis disrupts the long bone homeostasis of mice fed a high-fat high-sugar diet, aggravating long bone resorption. Supplementation with butyric acid-producing bacteria or butyrate can effectively alleviate the disruption of long bone homeostasis caused by periodontitis.