Journal of Prevention and Treatment for Stomatological Diseases ›› 2018, Vol. 26 ›› Issue (3): 200-204.doi: 10.12016/j.issn.2096-1456.2018.03.012

• Review Articles • Previous Articles    

Research progress in photocatalysis of titanium dioxide nanowire

Yan GAO1(), Ying LIU2, Lei ZHOU1(), Shulan XU1   

  1. 1. Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China;
    2. Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China;
  • Received:2017-01-13 Revised:2017-04-06 Online:2018-03-20 Published:2018-08-31

Abstract:

Because nanoparticles have particular characteristics, such as small size and surface effects, nano-TiO2 is widely used in air purification, wastewater treatment and self-cleaning. In recent years, TiO2 photocatalysis has thoroughly explored as a new titanium implant surface treatment method. Photocatalytic performance is better for TiO2 nanowires than for nano-TiO2 particles. Hence, these nanowires have received widespread attention with regard for their more specific surface area and surface energy, improved charge carrier transport efficiency, and enhanced charge collection efficiency. Photon-generated carrier transport moves in a one dimensional straight path along a nanowire, and this could decrease photoelectron loss. In this paper, we summarized the principles underlying, factors that influence, and applications involving TiO2 nanowire photocatalysis. Additionally, we describe its method of preparation and toxicity.

Key words: Titanium dioxide, Nanowire, Ultraviolet, Photocatalysis, Osseointegration, implant, surface treatment

CLC Number: 

  • R783.4

Figure 1

The mechanism of and diagram describing photocatalysis reaction[2]"

[1] Xiao Q, Ouyang L.Photocatalytic activity and hydroxyl radical formation of carbon-doped TiO2 nanocrystalline: effect of calcination temperature[J]. Chem Eng J, 2009, 148(2/3): 248-253.
[2] Fujishima A, Honda K.Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.
[3] Frank SN, Bard AJ.Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder[J]. J Am Chem Soc, 1977, 99(1): 303-304.
[4] Wang R, Hashimoto K, Fujishima A.Light-induced amphiphilic surface[J]. Nature, 1997, 388(6641): 431-432.
[5] 丁祥龙, 周磊. TiO2光催化效应对种植体生物活性的影响[J]. 口腔疾病防治, 2016, 24(1): 49-52.
[6] Hwang YJ, Hahn C, Liu B, et al.Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating[J]. ACS Nano, 2012, 6(6): 5060-5069.
[7] Cui JW, Wu YC, Wang Y, et al.Template-assisted fabrication of gold nanowire arrays for ethanol electro-oxidation[J]. J Nanosci Nanotechnol, 2013, 13(2): 1149-1152.
[8] Miao FJ, Tao BR, Chu PK.Preparation and electrochemistry of Pd-Ni/Si nanowire nanocomposite catalytic anode for direct ethanol fuel cell[J]. Dalton Transactions, 2012, 41(16): 5055-5059.
[9] Sheng Y, Sun H, Wang J, et al.Fabrication of lateral electrodes on semiconductor nanowires through structurally matched insulation for functional optoelectronics[J]. Nanotechnol, 2013, 24(2): 025204.
[10] Qin X, Wang H, Miao Z, et al.Synthesis of silver nanowires and their applications in the electrochemical detection of halide[J]. Talanta, 2011, 84(3): 673-678.
[11] 方世杰, 徐明霞, 张玉珍. 二氧化钛光催化降解作用的研究综述[J]. 材料导报, 2001, 12(15): 32-34.
[12] Efstathiou P, Xu XX, Menard H, et al.An investigation of crystal structure, surface area and surface chemistry of strontium niobate and their influence on photocatalytic performance[J]. Dalton Transactions, 2013, 42(22): 7880-7887.
[13] Tanaka K, Capule MF, Hisanaga T.Effect of crystallinity of TiO2 on its photocatalytic action[J]. Chem Phys Lett, 1991, 187(1/2): 73-76.
[14] Zhang J, Xu Q, Feng ZC, et al.Importance of the relationship between surface phases and photocatalytic activity of TiO2[J]. Angew Chem Int Ed Engl, 2008, 47(9): 1766-1769.
[15] Liu G, Sun CH, Yang HG, et al.Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity[J]. Chemical Communications, 2010, 46(5): 755-757.
[16] Bickley IB, Gonzalez-Carreno T, Lees JS, et al.A structual investigation of titanium dioxide photocatalysts[J]. J Solid State Chem, 1991, 92: 178-190.
[17] Zhou ZJ, Fan JQ, Wang X, et al.Effect of highly ordered single-crystalline TiO2 nanowire length on the photovoltaic performance of dye-sensitized solar cells[J]. ACS Appl Mater Interfaces, 2011, 3(11): 4349-4353.
[18] Tung WS, Daoud WA, Leung SK.Understanding photocatalytic behavior on biomaterials: insights from TiO2 concentration[J]. J Colloid Interface Sci, 2009, 339(2): 424-433.
[19] 高铁, 钱朝勇, 于向阳. TiO2表面超亲水性[J]. 材料导报, 2000, 14(7): 27-29.
[20] Kontos AG, Kontos AI, Tsoukleris DS, et al.Photo-induced effects on self-organized TiO2 nanotube arrays: the influence of surface morphology[J]. Nanotechnology, 2009, 20(4): 045603.
[21] ILSI Risk Science Institute. The relevance of the rat lung response to particle overload for human risk assessment:a workshop consensus report[J]. Inhal Toxicol, 2000, 12(1/2): 1-17.
[22] Magrez A, Horvath L, Smajda R, et al.Cellular toxicity of TiO2-based nanofilaments[J]. ACS Nano, 2009, 3(8): 2274-2280.
[23] Zhao LZ, Hu LS, Huo KF, et al.Mechanism of cell repellence on quasi-aligned nanowire arrays on Ti alloy[J]. Biomaterials, 2010, 31(32): 8341-8349.
[24] Hass JL, Garrison EM, Wicher SA, et al.Synthetic osteogenic extracellular matrix formed by coated silicon dioxide nanosprings[J]. J Nanobiotechnology, 2012, 10: 6.
[25] Hu AM, Zhang X, Oakes KD, et al.Hydrothermal growth of free standing TiO2 nanowire membranes for photocatalytic degradation of pharmaceuticals[J]. J Hazard Mater, 2011, 189(1/2): 278-285.
[26] Park W, Ishijima M, Hirota M, et al.Engineering bone-implant integration with photofunctionalized titanium microfibers[J]. J Biomater Appl, 2016, 30(8): 1242-1250.
[27] Iwasa F, Baba KZ, Ogawa T.Enhanced intracellular signaling pathway in osteoblasts on ultraviolet lighttreated hydrophilic titanium[J]. Biomed Res, 2016, 37(1): 1-11.
[28] Takahashi M, Motoyoshi M, Inaba M, et al.Enhancement of orthodontic anchor screw stability under immediate loading by ultraviolet photofunctionalization technology[J]. Int J Oral Maxillofac Implants, 2016, 31(6): 1320-1326.
[29] Flanagan D.Photofunctionalization of dental implants[J]. J Oral Implantol, 2016, 42(5): 445-450.
[30] Saita M, Ikeda T, Yamada M, et al.UV photofunctionalization promotes nano-biomimetic apatite deposition on titanium[J]. Int J Nanomedicine, 2016, 11: 223-234.
[31] Tabuchi M, Ikeda T, Hirota M, et al.Effect of UV photofunctionalization on biologic and anchoring capability of orthodontic miniscrews[J]. Int J Oral Maxillofac Implants, 2015, 30(4): 868-879.
[32] Sugita Y, Honda Y, Kato I, et al.Role of photofunctionalization in mitigating impaired osseointegration associated with type 2 diabetes in rats[J]. Int J Oral Maxillofac Implants, 2014, 29(6): 1293-1300.
[33] Ueno T, Ikeda T, Tsukimura N, et al.Novel antioxidant capability of titanium induced by UV light treatment[J]. Biomaterials, 2016, 108: 177-186.
[34] Minamikawa H, Ikeda T, Att W, et al.Photofunctionalization increases the bioactivity and osteoconductivity of the titanium alloy Ti6Al4V[J]. J Biomed Mater Res A, 2014, 102(10): 3618-3630.
[1] MAN Yi,ZHOU Nan,YANG Xingmei. Clinical application and new progress of dynamic navigation system in the field of oral implantology [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(6): 341-348.
[2] XIAO Wenlan,HU Chen,RONG Sheng′an,QU Yili. Clinical application of autogenous dentin as a bone graft material [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(6): 394-398.
[3] WEN Dandan,LV Yalin. Effect of different doses of aspirin on the early osseointegration of titanium alloy implants in rats [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(5): 285-291.
[4] ZHANG Sui,HE Dongning. Current status of immediate implant placement in the aesthetic zone of the anterior teeth [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(5): 331-335.
[5] WANG Yamin,ZHOU Zhen,DAO Junfeng,CHEN Qiyue,LIU Wenjing,SONG Guangbao. Evaluation of the effect of concentrated growth factor in guided bone regeneration in maxillary anterior tooth defects [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(4): 236-240.
[6] CAO Cong,ZHOU Nan,ZHANG Kai,JIAN Fan,XU Baohua,MAN Yi. Summary of combined orthodontic and implant treatment in the patients with the congenital absence of maxillary lateral incisors [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(4): 241-245.
[7] DING Feng,SHI Shaojie,SONG Yingliang. Research progress of superhydrophilic implants [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(4): 252-256.
[8] SHI Bin,YAN Qi,WU Xinyu. Clinical application and complications of short implants (≤6 mm) [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(3): 137-145.
[9] ZHOU Wen,PENG Xian,CHENG Lei. Research progress on factors affecting bacterial adhesion on the oral implant surface [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(2): 102-106.
[10] CAO Zhiwei,YANG Yuqing,ZHOU Tao,WU Peiyao,XIE Liang. Research progress on trace elements-modified titanium implant surfaces [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(2): 107-111.
[11] LIAN Keqian,ZHANG Xin,ZHOU Jieyu,LIAO Yanfen,SI Shanshan. Biocompatibility of bone marrow mesenchymal cells on polyetheretherketone and titanium surfaces in vitro [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(2): 73-78.
[12] OU Zhanpeng,ZHANG Hanqing,LI Qunxing,LIN Xinyu,FAN Song,LI Jinsong. Application of virtual surgical planning in the surgical treatment of osteoradionecrosis of mandible [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(9): 561-568.
[13] GUO Zehong,NING Yingyuan,XU Shulan,ZHAN jieling,DING Xianglong,GAO Yan. Clinical observation of alveolar ridge approach for odontogenic maxillary sinusitis and implant restoration [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(8): 505-509.
[14] CHEN Xuanjun,OUYANG Jiajie,ZHU Wenzhen,QING Anrong. Analysis of the application and effect of the PDCA cycle nursing management model in the treatment of peri-implant mucositis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(8): 527-530.
[15] Zehong GUO,Yingyuan NING,Shulan XU,Peijun ZHU,Xianglong DING,Yan GAO. Effect of laser-etched pure titanium surface on early proliferation of MG63 cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(7): 435-440.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hong-chang LAI,Jun-yu SHI. Maxillary sinus floor elevation[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(1): 8 -12 .
[2] Pin ZHOU, Yang-fei LI. MRI study of temporomandibular joint disc position in asymptomatic volunteers[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(4): 239 -244 .
[3] Xinxin XIA, Fang FANG, Lijuan CHENG. Shaping ability of Pathfile and WaveOne in simulated root canals[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(6): 365 -368 .
[4] Yuanhong LI, Xinyi FANG, Yu QIU, Lei CHENG. Experimental study on the effects of green tea on salivary flow rate and pH value[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(9): 560 -564 .
[5] Chengzhang LI. Masticatory muscles in occlusion[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(12): 755 -760 .
[6] . [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(1): 1 .
[7] Zhirong WU, Shiguang Huang. Research progress on the etiology, clinical examination and treatment of peri-implantitis[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(6): 401 -405 .
[8] Xiaowu YAO, Shisheng CHEN, Zizheng LU, Minxiao LIN. Clinical report and literature review on the amyloidosis of salivary glands[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(8): 533 -536 .
[9] Lan LIAO, Lijun ZENG. Updated research on digitalization in aesthetic restoration[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(7): 409 -414 .
[10] Yu LU, Chengxia LIU, Zhongjun LIU. Role of TRAF6 in inflammatory responses of human osteoblast-like cells with Enterococcusfaecalis[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(7): 420 -425 .
This work is licensed under a Creative Commons Attribution 3.0 License.