Journal of Prevention and Treatment for Stomatological Diseases ›› 2018, Vol. 26 ›› Issue (4): 211-217.doi: 10.12016/j.issn.2096-1456.2018.04.002

• Expert Forum • Previous Articles     Next Articles

Salivary transcriptomics and biomarkers of oral squamous cell carcinoma

Qian TAO, Xin LIU   

  1. Department of Oral Maxillofacial?Head and Neck Oncology Hospital of Stomatology Guanghua School of Stomatology Sun Yat?sen University Guangzhou 510055 China
  • Received:2017-08-02 Revised:2017-12-01 Online:2018-04-20 Published:2018-08-31


Saliva is rich in DNA, RNA, proteins, microorganisms and metabolites, containing large amounts of bio?information, similar to blood, and reflecting the physiological or pathological state of the whole body. Additionally, with its advantages of non?invasive collection methods, safe transport and low transportation cost, saliva has attracted extensive attention of scholars recently as a potential substitute for blood. With the rapid development of high?throughput techniques such as microarray technology, whole genome sequencing and whole transcriptome sequencing, a variety of disease-specific salivary biomarkers have been discovered. Salivary transcriptomics, a bridge connecting genomics and proteomics, provides a comprehensive understanding of gene transcription, RNA composition and interactions. This methodology not only allows the investigation of salivary components with temporal and spatial specificity but also reveals regulatory networks during disease development, with high potential for the early screening and assessment of diseases. Here, we outline the development of salivary transcriptomics, highlight its current research status in oral cancer from two aspects of technological and clinical applications, and further address prospects and challenges of the near future.

Key words: Saliva, Biomarker, Transcriptomics, Oral cancer, Early diagnosis

Table 1

OSCC-related salivary RNA biomarkers"

作者 年份 RNA类型 样本例数
唾液收集 检测方法 标志物 灵敏度(%)/特异度(%)/AUC







DUSP1(59 /75/0.65)
H3F3A(53 /81/0.68)
IL1β(63/72/0.70 )
IL8(88/ 81/ 0.85)
S100P( 72 /63 /0.71)
SATB(81/ 56/0.70)
IL1β+OAZ1+SAT+IL8. (91/91/0.95)






IL1β蛋白+ SAT1
mRNA + DUSP1 mRNA(89/78/0.86)
IL1β蛋白 + DUSP1 mRNA(诊断T3/T4期OSCC:82/84/ 0.88)
逆转录酶预扩增定量PCR miR-200a、miR-
Wiklund,等[41] 2011 miRNA 33(25/8) 非刺激相 qRT-PCR miR-375 NR
Liu等[46] 2012 miRNA 79(45/34) NR qRT-PCR miR-31 80/68/0.82
miRNA微阵列 miR-136、miR-27b
Salazar等[50] 2014
miRNA微阵列、qPCR miR-191、miR-9、
miR-429 、miR-
Zahran等[47] 2015
miRNA-21、 miR
Tang等[58] 2013 LncRNA 18(9/9) NR qRT-PCR MALAT-1 NR
[1] Yoshizawa JM, Schafer CA, Schafer JJ, et al.Salivary biomarkers: toward future clinical and diagnostic utilities[J]. Clin Microbiol Rev, 2013, 26(4): 781-791.
[2] Radhika T, Jeddy N, Nithya S, et al.Salivary biomarkers in oral squamous cell carcinoma - an insight[J]. J Oral Biol Craniofac Res, 2016, 6(Suppl 1): S51-S54.
[3] Castagnola M, Scarano E, Passali GC, et al.Salivary biomarkers and proteomics: future diagnostic and clinical utilities[J]. Acta Otorhinolaryngol Ital, 2017, 37(2): 94-101.
[4] Xiao H, Zhang L, Zhou H, et al.Proteomic analysis of human saliva from lung cancer patients using two-dimensional difference gel electrophoresis and mass spectrometry[J]. Mol Cell Proteomics, 2012, 11(2).
[5] Spielmann N, Wong DT.Saliva: diagnostics and therapeutic perspectives[J]. Oral Dis, 2011, 17(4): 345-354.
[6] Abraham JE, Maranian MJ, Spiteri I, et al.Saliva samples are a viable alternative to blood samples as a source of DNA for high throughput genotyping[J]. BMC Med Genomics, 2012, 5(1): 19.
[7] Looi ML, Zakaria H, Osman J, et al.Quantity and quality assessment of DNA extracted from saliva and blood[J]. Clin Lab, 2012, 58(3/4): 307-312.
[8] Gold B, Cankovic M, Furtado LV, et al.Do circulating tumor cells, exosomes, and circulating tumor nucleic acids have clinical utility?: a report of the association for molecular pathology[J]. J Mol Diagn, 2015, 17(3): 209-224.
[9] Liao PH, Chang YC, Huang MF, et al.Mutation of p53 gene codon 63 in saliva as a molecular marker for oral squamous cell carcinomas[J]. Oral Oncol, 2000, 36(3): 272-276.
[10] Carvalho AL, Henrique R, Jeronimo C, et al.Detection of promoter hypermethylation in salivary rinses as a biomarker for head and neck squamous cell carcinoma surveillance[J]. Clin Cancer Res, 2011, 17(14): 4782-4789.
[11] Denny P, Hagen FK, Hardt M, et al.The proteomes of human parotid and submandibular/sublingual gland salivas collected as the ductal secretions[J]. J Proteome Res, 2008, 7(5): 1994-2006.
[12] Al Kawas S, Rahim ZH, Ferguson DB.Potential uses of human salivary protein and peptide analysis in the diagnosis of disease[J]. Arch Oral Biol, 2012, 57(1): 1-9.
[13] Shpitzer T, Hamzany Y, Bahar G, et al.Salivary analysis of oral cancer biomarkers[J]. Br J Cancer, 2009, 101(7): 1194-1198.
[14] Stott-Miller M, Houck JR, Lohavanichbutr P, et al.Tumor and salivary matrix metalloproteinase levels are strong diagnostic markers of oral squamous cell carcinoma[J]. Cancer Epidemiol Biomarkers Prev, 2011, 20(12): 2628-2636.
[15] Korostoff A, Reder L, Masood R, et al.The role of salivary cytokine biomarkers in tongue cancer invasion and mortality[J]. Oral Oncol, 2011, 47(4): 282-287.
[16] Aziz S, Ahmed SS, Ali A, et al.Salivary immunosuppressive cytokines IL-10 and IL-13 are significantly elevated in oral squamous cell carcinoma patients[J]. Cancer Invest, 2015, 33(7): 318-328.
[17] Sivadasan P, Gupta MK, Sathe GJ, et al.Human salivary proteome--a resource of potential biomarkers for oral cancer[J]. J Proteomics, 2015, 127(Pt A): 89-95.
[18] Sugimoto M, Wong DT, Hirayama A, et al.Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles[J]. Metabolomics, 2010, 6(1): 78-95.
[19] Ishikawa S, Sugimoto M, Kitabatake K, et al.Identification of salivary metabolomic biomarkers for oral cancer screening[J]. Sci Rep, 2016, 6: 31520.
[20] Mager DL, Haffajee AD, Devlin PM, et al.The salivary microbiota as a diagnostic indicator of oral cancer: a descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects[J]. J Transl Med, 2005, 3(1): 27.
[21] Lau C, Kim Y, Chia D, et al.Role of pancreatic cancer-derived exosomes in salivary biomarker development[J]. J Biol Chem, 2013, 288(37): 26888-26897.
[22] Zhang L, Xiao H, Zhou H, et al.Development of transcriptomic biomarker signature in human saliva to detect lung cancer[J]. Cell Mol Life Sci, 2012, 69(19): 3341-3350.
[23] Dobroff AS, D'angelo S, Eckhardt BL, et al. Towards a transcriptome-based theranostic platform for unfavorable breast cancer phenotypes[J]. Proc Natl Acad Sci U S A, 2016, 113(45).
[24] Park NJ, Zhou H, Elashoff D, et al.Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection[J]. Clin Cancer Res, 2009, 15(17): 5473-5477.
[25] Fonteles CS, Dos Santos CF, Da Silva Alves KS, et al. Comparative proteomic analysis of human whole saliva of children with protein-energy undernutrition[J]. Nutrition, 2012, 28(7/8): 744-748.
[26] Li Y, St John MA, Zhou X, et al.Salivary transcriptome diagnostics for oral cancer detection[J]. Clin Cancer Res, 2004, 10(24): 8442-8450.
[27] Li Y, Zhou X, St John MA, et al.RNA profiling of cell-free saliva using microarray technology[J]. J Dent Res, 2004, 83(3): 199-203.
[28] Brinkmann O, Kastratovic DA, Dimitrijevic MV, et al.Oral squamous cell carcinoma detection by salivary biomarkers in a Serbian population[J]. Oral Oncol, 2011, 47(1): 51-55.
[29] Calin GA, Dumitru CD, Shimizu M, et al.Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia[J]. Proc Natl Acad Sci U S A, 2002, 99(24): 15524-15529.
[30] Karimi Kurdistani Z, Saberi S, Tsai KW, et al.MicroRNA-21: mechanisms of oncogenesis and its application in diagnosis and prognosis of gastric cancer[J]. Arch Iran Med, 2015, 18(8): 524-536.
[31] Bertoli G, Cava C, Castiglioni I.MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer[J]. Theranostics, 2015, 5(10): 1122-1143.
[32] Steele CW, Oien KA, Mckay CJ, et al.Clinical potential of microRNAs in pancreatic ductal adenocarcinoma[J]. Pancreas, 2011, 40(8): 1165-1171.
[33] Markou A, Zavridou M, Lianidou ES. miRNA-21 as a novel therapeutic target in lung cancer[J]. Lung Cancer (Auckland, N.Z.), 2016, 7: 19-27.
[34] Moridikia A, Mirzaei H, Sahebkar A, et al.MicroRNAs: potential candidates for diagnosis and treatment of colorectal cancer[J]. J Cell Physiol, 2018, 233(2): 901-913.
[35] Catela Ivkovic T, Voss G, Cornella H, et al.MicroRNAs as cancer therapeutics: a step closer to clinical application[J]. Cancer Lett, 2017, 407: 113-122.
[36] Yang G, Zhang W, Yu C, et al.MicroRNA let-7: Regulation, single nucleotide polymorphism, and therapy in lung cancer[J]. J Cancer Res Ther, 2015, 11(Suppl 1): C1-C6.
[37] Barh D, Malhotra R, Ravi B, et al.MicroRNA let-7: an emerging next-generation cancer therapeutic[J]. Curr Oncol, 2010, 17(1): 70-80.
[38] Kinose Y, Sawada K, Nakamura K, et al.The role of microRNAs in ovarian cancer[J]. Biomed Res Int, 2014, 2014(8):249393.
[39] Li Y, Li Y, Liu J, et al.Expression levels of microRNA-145 and microRNA-10b are associated with metastasis in non-small cell lung cancer[J]. Cancer Biol Ther, 2016, 17(3): 272-279.
[40] Weber JA, Baxter DH, Zhang SL, et al.The microRNA spectrum in 12 body fluids[J]. Clin Chem, 2010, 56(11): 1733-1741.
[41] Wiklund ED, Gao S, Hulf T, et al.MicroRNA alterations and associated aberrant DNA methylation patterns across multiple sample types in oral squamous cell carcinoma[J]. PLoS One, 2011, 6(11): e27840.
[42] Greenberg E, Hershkovitz L, Itzhaki O, et al.Regulation of cancer aggressive features in melanoma cells by microRNAs[J]. PLoS One, 2011, 6(4): e18936.
[43] Wszolek MF, Rieger-Christ KM, Kenney PA, et al.A microRNA expression profile defining the invasive bladder tumor phenotype[J]. Urol Oncol, 2011, 29(6): 794-801.
[44] Wu XM, Shao XQ, Meng XX, et al.Genome-wide analysis of microRNA and mRNA expression signatures in hydroxycamptothecin-resistant gastric cancer cells[J]. Acta Pharmacol Sin, 2011, 32(2): 259-269.
[45] Liu CJ, Kao SY, Tu HF, et al.Increase of microRNA miR-31 level in plasma could be a potential marker of oral cancer[J]. Oral Dis, 2010, 16(4): 360-364.
[46] Liu CJ, Lin SC, Yang CC, et al.Exploiting salivary miR-31 as a clinical biomarker of oral squamous cell carcinoma[J]. Head Neck, 2012, 34(2): 219-224.
[47] Zahran F, Ghalwash D, Shaker O, et al.Salivary microRNAs in oral cancer[J]. Oral Dis, 2015, 21(6): 739-747.
[48] 李月秀, 杨娅, 肖长杰, 等. 目标miRNAs在口腔白斑癌变患者唾液中的表达研究[J]. 临床口腔医学杂志, 2015,(7): 407-409.
[49] Momen-Heravi F, Trachtenberg AJ, Kuo WP, et al.Genomewide study of salivary microRNAs for detection of oral cancer[J]. J Dent Res, 2014, 93(7 Suppl): 86S-93S.
[50] Salazar C, Nagadia R, Pandit P, et al.A novel saliva-based microRNA biomarker panel to detect head and neck cancers[J]. Cell Oncol, 2014, 37(5): 331-338.
[51] Qi P, Du X.The long non-coding RNAs, a new cancer diagnostic and therapeutic Gold mine[J]. Modern Pathology, 2013, 26(2): 155-165.
[52] 欧阳可雄, 梁军, 邹瑞, 等. 舌鳞癌组织长链非编码RNA的Ion Torrent高通量检测和分析[J]. 口腔疾病防治, 2016, 24(1): 15-19.
[53] Rinn JL, Kertesz M, Wang JK, et al.Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs[J]. Cell, 2007, 129(7): 1311-1323.
[54] Brunner AL, Beck AH, Edris B, et al.Transcriptional profiling of long non-coding RNAs and novel transcribed regions across a diverse panel of archived human cancers[J]. Genome Biol, 2012, 13(8): R75.
[55] Reis EM, Nakaya HI, Louro R, et al.Antisense intronic non-coding RNA levels correlate to the degree of tumor differentiation in prostate cancer[J]. Oncogene, 2004, 23(39): 6684-6692.
[56] Huarte M, Rinn JL.Large non-coding RNAs: missing links in cancer?[J]. Hum Mol Genet, 2010, 19(R2): R152-R161.
[57] Gibb EA, Brown CJ, Lam WL.The functional role of long non-coding RNA in human carcinomas[J]. Mol Cancer, 2011, 10(1): 10.
[58] Tang H, Wu Z, Zhang J, et al.Salivary lncRNA as a potential marker for oral squamous cell carcinoma diagnosis[J]. Mol Med Rep, 2013, 7(3): 761-766.
[59] Ronnau C, Verhaegh GW, Luna-Velez MV, et al.Noncoding RNAs as novel biomarkers in prostate cancer[J]. Biomed Res Int, 2014: 591703.
[1] WANG Zhangsong,XIE Shule,ZHANG Hanqing,FANG Zezhen,LI Qunxing,FAN Song,LI Jinsong. Clinical and pathological analysis of 2 456 cases of salivary gland tumor [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(5): 298-302.
[2] WU Donghui,ZHU Yunying,LIANG Jianqiang,LIN Zhaoyu,LI Jinsong. Study on lncRNA ADAMTS9-AS2 promoting invasion and metastasis of salivary adenoid cystic carcinoma [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(4): 214-218.
[3] ZHANG Yu,JI Tong. Application of Indocyanine green in visual treatment of oral cancer [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(2): 118-122.
[4] LIN Shigeng,WANG Tao,WANG Hong,SUN Yin,FAN Song. Application of extended clavicular epithelial flap in postoperative defect repair in elderly patients with oral cancer [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(8): 500-504.
[5] TAO Qian,LIANG Peisheng. Evolution of diagnostic criteria for Sjögren′s Syndrome [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(5): 273-279.
[6] ZHANG Ning,HU Yue,QIAO Chunyan,JI Xin,HAN Ruyu,SUN Lanfang,LI Minghe,HAN Chengmin. Mucoepidermoid carcinoma arising in Warthin’s tumor of the upper lip: a case report and review [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(4): 250-254.
[7] HUANG Lihuan,JIANG Yingtong,OUYANG Kexiong,WU Lihong,YANG Xuechao. Research progress on the role and mechanism of miR-155 in the development of oral squamous cell carcinoma [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(12): 809-812.
[8] TAO Qian , HUANG Yun. Analysis of causes for non-stone parotid obstructions [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(11): 689-694.
[9] WU Zhengxi,LI Fenglan. Effect of two aging methods on the bonding interface between glass ceramics and dentin [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(11): 703-710.
[10] WANG Cuiping,WANG Mengxi,LV Bo. Depression status of 136 patients with adjuvant radiotherapy after reconstruction of the oral cancer flap and analysis of influencing factors [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(11): 723-728.
[11] CHEN Zengquan,JIN Tingting,WANG Yan,WANG Lin,MAI Lianxi,HUANG Zhiquan. Sclerosing polycystic adenosis of the parotid gland: a case report and literature review [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(11): 729-732.
[12] Xiaowu YAO, Shisheng CHEN, Zizheng LU, Minxiao LIN. Clinical report and literature review on the amyloidosis of salivary glands [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(8): 533-536.
[13] Xuan HAN, Yuanyuan HUO, Qiong ZHANG, Yuqing LI, Jing ZOU. Research progress of microbial biomarkers of early childhood caries [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(6): 391-395.
[14] Guiqing LIAO, Huanzi LU. Methods for assessing dysphagia related to oral cancer [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(6): 341-346.
[15] Xixi YU, Jian Lü, Caixia WANG, Yiheng WANG, Songsong DENG, Lulu LI, Wanchun WANG. The effects of intramuscular injections of vitamin B1 and B12 on pain, salivary components and taste in patients with burning mouth syndrome [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(4): 240-244.
Full text



[1] ZHU Song-song, HU Jing. The application of distraction osteogenesis in the temporomandibular joint ankylosis and secondary dentofacial deformities[J]. journal1, 2016, 24(1): 6 -10 .
[2] XU Jing. The influence of the impacted mandibular third molar extraction on the distal periodontal tissue of the mandibular second molar[J]. journal1, 2016, 24(1): 11 -14 .
[3] ZHONG Jiang-long, PAN Ji-yang, CHEN Wei-liang. The evaluation of Eagle syndrome treatment by surgery combined with antidepressant therapy[J]. journal1, 2016, 24(1): 26 -28 .
[4] OUYANG Ke-xiong1, LIANG Jun, ZOU Rui, LI Zhi-qiang, BAI Zhi-bao, PIAO Zheng-guo, ZHAO Jian-Jiang.. Ion Torrent RNA-Seq detection and analysis of the long non-coding RNA in tongue squamous cell carcinoma[J]. journal1, 2016, 24(1): 15 -19 .
[5] Chao TANG,Jing SUN,Ju-feng CHEN. Influence of nursing intervention on the life quality of patients with tongue cancer after operation[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(3): 177 -179 .
[6] Hong-chang LAI,Jun-yu SHI. Maxillary sinus floor elevation[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(1): 8 -12 .
[7] WANG An-xun. Research progress on the invasion and metastasis of tongue squamous cell carcinoma[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(5): 261 -266 .
[8] Pin ZHOU, Yang-fei LI. MRI study of temporomandibular joint disc position in asymptomatic volunteers[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(4): 239 -244 .
[9] Xinxin XIA, Fang FANG, Lijuan CHENG. Shaping ability of Pathfile and WaveOne in simulated root canals[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(6): 365 -368 .
[10] Yuanhong LI, Xinyi FANG, Yu QIU, Lei CHENG. Experimental study on the effects of green tea on salivary flow rate and pH value[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(9): 560 -564 .
This work is licensed under a Creative Commons Attribution 3.0 License.