Journal of Prevention and Treatment for Stomatological Diseases ›› 2018, Vol. 26 ›› Issue (7): 472-476.doi: 10.12016/j.issn.2096-1456.2018.07.013

• Review Articles • Previous Articles    

Research progress on anticaries nanomaterials

Xiaohu XU1(), Xingzhu DAI2, Wanghong ZHAO2()   

  1. 1. Department of Stomatology, Shenzhen Longhua District Central Hopital, Shenzhen 518110, China
    2. Department of Stomatology, Nanfang Hospital, Southern Medical University, School of Stomatology, Southern Medical University, Guangzhou 510515, China
  • Received:2017-09-12 Revised:2017-11-16 Online:2018-07-20 Published:2018-08-30

Abstract:

Dental caries are the most common and widespread biofilm-dependent oral disease. Nanotechnology promises to be a useful strategy for dental caries management by combating caries-related bacteria, decreasing biofilm accumulation, inhibiting demineralization and enhancing remineralization. Many potential applications of nanotechnology in the development of anticaries materials have recently been reported, especially for anticaries?adhesive?nanomaterials and anticaries?nanofilled composite resins. This review summarizes the current progress in the application of functional nanoparticles in the following products: antibacterial?nanomaterials, remineralizing nanomaterials and nanodrug delivery systems.

Key words: Nanotechnology, Anticaries, Antibacterial, Remineralization, Nanodrug delivery system

CLC Number: 

  • R781.05
[1] Cheng L, Zhang K, Weir MD, et al.Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries[J]. Nanomedicine (Lond), 2015, 10(4): 627-641.
[2] Melo MA, Guedes SF, Xu HH, et al.Nanotechnology-based restorative materials for dental caries management[J]. Trends Biotechnol, 2013, 31(8): 459-467.
[3] Cheng L, Zhang K, Weir MD, et al.Effects of antibacterial primers with quaternary ammonium and nano-silver on Streptococcus mutans impregnated in human dentin blocks[J]. Dent Mater, 2013, 29(4): 462-472.
[4] 郗红, 周惠, 闫秀娟, 等. 纳米技术在龋病治疗中应用的研究进展[J]. 国际口腔医学杂志, 2014, 41(5): 563-566.
[5] Elkassas D, Arafa A.The innovative applications of therapeutic nanostructures in dentistry[J]. Nanomedicine, 2017, 13(4): 1543-1562.
[6] Elkassas DW, Haridy M.Degree of conversion, flexural strength and bond strength durability of a contemporary universal dentin adhesive fortified with silver and hydroxyapatite nanoparticles[J]. Egypt Dent, 2015, 61: 1-11.
[7] Cheng YJ, Zeiger DN, Howarter JA, et al.In situ formation of silver nanoparticles in photocrosslinking polymers[J]. J Biomed Mater Res B Appl Biomater, 2011, 97(1): 124-131.
[8] Cheng L, Weir MD, Xu HH, et al.Effect of amorphous calcium phosphate and silver nanocomposites on dental plaque microcosm biofilms[J]. J Biomed Mater Res B Appl Biomater, 2012, 100(5): 1378-1386.
[9] Toledano M, Sauro S, Cabello I, et al.A Zn-doped etch-and-rinse adhesive may improve the mechanical properties and the integrity at the bonded-dentin interface[J]. Dent Mater, 2013, 29(8): e142-e152.
[10] Toledano M, Aguilera FS, Osorio E, et al.Self-etching zinc-doped adhesives improve the potential of caries-affected dentin to be functionally remineralized[J]. Biointerphases, 2015, 10(3): 031002.
[11] Cheng L, Weir MD, Xu HH, et al.Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles[J]. Dent Mater, 2012, 28(5): 561-572.
[12] Tavassoli Hojati S, Alaghemand H, Hamze F, et al.Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles[J]. Dent Mater, 2013, 29(5): 495-505.
[13] 石磊, 宋艾阳, 宫海环, 等. 纳米复合树脂研究进展[J]. 中国实用口腔科杂志, 2015, 8(3): 180-183.
[14] Yudovin-Farber I, Beyth N, Weiss EI, et al.Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles[J]. J Nanopart Res, 2010, 12(2): 591-603.
[15] Zhou H, Weir MD, Antonucci JM, et al.Evaluation of three-dimensional biofilms on antibacterial bonding agents containing novel quaternary ammonium methacrylates[J]. Int J Oral Sci, 2014, 6(2): 77-86.
[16] 王素苹, 程磊, 周学东. 复合树脂纳米抗菌成分的研究进展[J]. 国际口腔医学杂志, 2013, 40(6): 750-753.
[17] Zhang K, Cheng L, Imazato S, et al.Effects of dual antibacterial agents MDPB and nano-silver in primer on microcosm biofilm, cytotoxicity and dentine bond properties[J]. J Dent, 2013, 41(5): 464-474.
[18] Vyavhare S, Sharma DS, Kulkarni VK.Effect of three different pastes on remineralization of initial enamel lesion: an in vitro study[J]. J Clin Pediatr Dent, 2015, 39(2): 149-160.
[19] Leitune VC, Collares FM, Trommer RM, et al.The addition of nanostructured hydroxyapatite to an experimental adhesive resin[J]. J Dent, 2013, 41(4): 321-327.
[20] Weir MD, Moreau JL, Levine ED, et al.Nanocomposite containing CaF(2) nanoparticles: thermal cycling, wear and long-term water-aging[J]. Dent Mater, 2012, 28(6): 642-652.
[21] Lee JH, Seo SJ, Kim HW.Bioactive glass-based nanocomposites for personalized dental tissue regeneration[J]. Dent Mater J, 2016, 35(5): 710-720.
[22] Li F, Wang P, Weir MD, et al.Evaluation of antibacterial and remineralizing nanocomposite and adhesive in rat tooth cavity model[J]. Acta Biomater, 2014, 10(6): 2804-2813.
[23] Wu J, Weir MD, Melo MA, et al.Development of novel self-healing and antibacterial dental composite containing calcium phosphate nanoparticles[J]. J Dent, 2015, 43(3): 317-326.
[24] Weir MD, Chow LC, Xu HH.Remineralization of demineralized enamel via calcium phosphate nanocomposite[J]. J Dent Res, 2012, 91(10): 979-984.
[25] Zhang L, Weir MD, Chow LC, et al.Novel rechargeable calcium phosphate dental nanocomposite[J]. Dent Mater, 2016, 32(2): 285-293.
[26] Vichery C, Nedelec JM.Bioactive glass nanoparticles: from synthesis to materials design for biomedical applications[J]. Materials (Basel), 2016, 9(4): 288-305.
[27] Tauböck TT, Zehnder M, Schweizer T, et al.Functionalizing a dentin bonding resin to become bioactive[J]. Dent Mater, 2014, 30(8): 868-875.
[28] Tian L, Peng C, Shi Y, et al.Effect of mesoporous silica nanoparticles on dentinal tubule occlusion: an in vitro study using SEM and image analysis[J]. Dent Mater J, 2014, 33(1): 125-132.
[29] Seneviratne CJ, Leung KC, Wong CH, et al.Nanoparticle-encapsulated chlorhexidine against oral bacterial biofilms[J]. PLoS One, 2014, 9(8): e103234.
[30] Zhang JF, Wu R, Fan Y, et al.Antibacterial dental composites with chlorhexidine and mesoporous silica[J]. J Dent Res, 2014, 93(12): 1283-1289.
[31] Shu Z, Zhang Y, Yang Q, et al.Halloysite nanotubes supported Ag and ZnO nanoparticles with synergistically enhanced antibacterial activity[J]. Nanoscale Res Lett, 2017, 12(1): 135.
[32] Bottino MC, Batarseh G, Palasuk J, et al.Nanotube-modified dentin adhesive--physicochemical and dentin bonding characterizations[J]. Dent Mater, 2013, 29(11): 1158-1165.
[33] Zhou Y, Yang J, Lin Z, et al.Triclosan-loaded poly(amido amine) dendrimer for simultaneous treatment and remineralization of human dentine[J]. Colloids Surf B Biointerfaces, 2014, 115(3): 237-243.
[34] Liang K, Weir MD, Reynolds MA, et al.Poly (amido amine) and nano-calcium phosphate bonding agent to remineralize tooth dentin in cyclic artificial saliva/lactic acid[J]. Mater Sci Eng C Mater Biol Appl, 2017, 72: 7-17.
[1] SONG Qun,LIU Xiaochen,MA Yuxuan,WANG Chenyu,JIAO Kai,NIU Lina. Biomimetic remineralization of dentin [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(6): 383-389.
[2] CAO Zhiwei,YANG Yuqing,ZHOU Tao,WU Peiyao,XIE Liang. Research progress on trace elements-modified titanium implant surfaces [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(2): 107-111.
[3] ZHOU Wen,PENG Xian,CHENG Lei. Research progress on factors affecting bacterial adhesion on the oral implant surface [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(2): 102-106.
[4] JIAO Yang,CHEN Jihua. Recent advances in the application of quaternary ammonium compounds in biomedical materials [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(5): 280-286.
[5] HU Beibei,BAI Hai,JIA Wanping,LIANG Yongqiang. Remineralization effect of nanohydroxyapatite on adjacent glazed surfaces [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(4): 231-235.
[6] ZENG Yongfa,FU Yulin,DAI Qun,SHI Lianshui. Preparation and antibacterial properties of La-doped TiO2 films on 3Y-TZP ceramic surface [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(3): 153-158.
[7] WANG Ping,ZHANG Yingjuan. Material properties and clinical application status of Biodentine [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(11): 745-748.
[8] Wen-miao LI, Zheng-gen PIAO. Progress in the study of calcium hydroxide in different vehicles [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(3): 192-195.
[9] Zhen-xia LI, Ting-ting CHEN, Pei-lin LI, Jing XUE, Qiang ZHANG. Antibacterial effects and tensile bonding strength of orthodontic adhesive containing nanohydroxyapatite [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(2): 93-96.
[10] Changbo WEI, Dongsheng YU. Research progress of nanomaterials and nanotechnology in cancer radiotherapy sensitization [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(11): 744-748.
[11] Jiang CHEN,Lin ZHOU. Advances in the design of the transmucosal part of dental implant [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(8): 441-444.
[12] Hai-xia LIU,Xuan CHEN,Ling ZOU. An in vitro evaluation of antibacterial properties of 2 pulp capping materials [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(10): 578-581.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hong-chang LAI,Jun-yu SHI. Maxillary sinus floor elevation[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(1): 8 -12 .
[2] Pin ZHOU, Yang-fei LI. MRI study of temporomandibular joint disc position in asymptomatic volunteers[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(4): 239 -244 .
[3] Xinxin XIA, Fang FANG, Lijuan CHENG. Shaping ability of Pathfile and WaveOne in simulated root canals[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(6): 365 -368 .
[4] Yuanhong LI, Xinyi FANG, Yu QIU, Lei CHENG. Experimental study on the effects of green tea on salivary flow rate and pH value[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(9): 560 -564 .
[5] Chengzhang LI. Masticatory muscles in occlusion[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(12): 755 -760 .
[6] . [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(1): 1 .
[7] Zhirong WU, Shiguang Huang. Research progress on the etiology, clinical examination and treatment of peri-implantitis[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(6): 401 -405 .
[8] Xiaowu YAO, Shisheng CHEN, Zizheng LU, Minxiao LIN. Clinical report and literature review on the amyloidosis of salivary glands[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(8): 533 -536 .
[9] Lan LIAO, Lijun ZENG. Updated research on digitalization in aesthetic restoration[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(7): 409 -414 .
[10] Yu LU, Chengxia LIU, Zhongjun LIU. Role of TRAF6 in inflammatory responses of human osteoblast-like cells with Enterococcusfaecalis[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(7): 420 -425 .
This work is licensed under a Creative Commons Attribution 3.0 License.