Journal of Prevention and Treatment for Stomatological Diseases ›› 2018, Vol. 26 ›› Issue (9): 601-605.doi: 10.12016/j.issn.2096-1456.2018.09.011

• Review Articles • Previous Articles     Next Articles

Relationship between T cells and bone regeneration: recent progress and perspectives

Renli YANG1,2,Yuanjing WANG1,Shimin WEI1,Wen HUANG1,Yufei WANG1,3,Chenyou ZHU1,2,Yili QU1,2   

  1. 1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
    2. Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
    3. Dept. of Endodontics, West China Hospital of Stomatology, Sichuan University
  • Received:2018-06-29 Revised:2018-07-27 Online:2018-09-20 Published:2018-09-30

Abstract:

Bone is capable of regeneration after injury, but the process of properly restoring form and function is highly complex and prone to failure. The restoration process requires highly ordered and sequential interplay at the injury site between the host immune system and bone tissue. The dynamic process that occurs after bone injury includes the formation of a hematoma, the development of an inflammatory response and callus, and the remodeling of newly formed bone tissue. The inflammatory response at the injury site is essential for the onset of bone regeneration. This inflammatory response is tightly linked with the host immune system, in which various immune cells and molecules are involved. Recently, the relationship between T cells and bone regeneration has become a popular topic; however, currently, there are no summaries of the relationship between T cells and bone regeneration. Thus, this review aimed to elucidate the modulatory functions of T cells in bone regeneration.

Key words: T cells, Subsets, Bone regeneration, Regulatory T cells, Cytokine, Inflammation

CLC Number: 

  • R78

Figure 1

The relationship between T cell subsets and bone regeneration"

[1] Gerstenfeld LC, Cho TJ, Kon T , et al. Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption[J]. J Bone Miner Res, 2003,18(9):1584-1592.
doi: 10.1359/jbmr.2003.18.9.1584
[2] Mendes BB, Gomez-Florit M, Babo PS , et al. Blood derivatives awaken in regenerative medicine strategies to modulate wound healing[J]. Adv Drug Deliv Rev, 2018,129(1):376-393.
doi: 10.1016/j.addr.2017.12.018 pmid: 29288732
[3] Spiller KL, Freytes DO, Vunjak-Novakovic G . Macrophages modulate engineered human tissues for enhanced vascularization and healing[J]. Ann Biomed Eng, 2015,43(3):616-627.
doi: 10.1007/s10439-014-1156-8 pmid: 25331098
[4] Klopfleisch R . Macrophage reaction against biomaterials in the mouse model -- phenotypes, functions and markers[J]. Acta Biomater, 2016,43:3-13.
doi: 10.1016/j.actbio.2016.07.003
[5] Chu CY, Liu L, Wang YF , et al. Macrophage phenotype in the epigallocatechin-3-gallate (EGCG)-modified collagen determines foreign body reaction[J]. J Tissue Eng Regen Med, 2018,12(6):1499-1507.
doi: 10.1002/term.v12.6
[6] Mills CD, Kincaid K, Alt JM , et al. M-1/M-2 macrophages and the Th1/Th2 paradigm[J]. J Immunol, 2000,164(12):6166-6173.
doi: 10.4049/jimmunol.164.12.6166
[7] Zaiss MM, Frey B, Hess A , et al. Regulatory T cells protect from local and systemic bone destruction in arthritis[J]. J Immunol, 2010,184(12):7238-7246.
doi: 10.4049/jimmunol.0903841 pmid: 20483756
[8] Lei H, Schmidt-Bleek K, Dienelt A , et al. Regulatory T cell-mediated anti-inflammatory effects promote successful tissue repair in both indirect and direct manners[J]. Front Pharmacol, 2015,6:184.
[9] Ono T, Okamoto K, Nakashima T , et al. IL-17-producing gamma delta T cells enhance bone regeneration[J]. Nat Commun, 2016,7:10928.
doi: 10.1038/ncomms10928
[10] Liu Y, Wang L, Kikuiri T , et al. Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-gamma and TNF-alpha[J]. Nat Med, 2011,17(12):1594-1601.
doi: 10.1038/nm.2542
[11] Grassi F, Cattini L, Gambari L , et al. T cell subsets differently regulate osteogenic differentiation of human mesenchymal stromal cells in vitro[J]. J Tissue Eng Regen Med, 2016,10(4):305-314.
doi: 10.1002/term.1727
[12] Cho TJ, Gerstenfeld LC, Einhorn TA . Differential temporal expression of members of the transforming growth factor β superfamily during murine fracture healing[J]. J Bone Miner Res, 2002,17(3):513-520.
doi: 10.1359/jbmr.2002.17.3.513
[13] Bernhardsson M, Aspenberg P . Osteoblast precursors and inflammatory cells arrive simultaneously to sites of a trabecular-bone injury[J]. Acta Orthop, 2018,89(4):457-461.
doi: 10.1080/17453674.2018.1481682
[14] Dimitriou R, Tsiridis E, Carr I , et al. The role of inhibitory molecules in fracture heating[J]. Injury, 2006,37(1):S20-S29.
doi: 10.1016/j.injury.2006.02.039 pmid: 16616754
[15] Chu CY, Deng J, Sun XC , et al. Collagen membrane and immune response in guided bone regeneration: recent progress and perspectives[J]. Tissue Eng Part B Rev, 2017,23(5):421-435.
doi: 10.1089/ten.teb.2016.0463
[16] Spiller KL, Koh TJ . Macrophage-based therapeutic strategies in regenerative medicine[J]. Adv Drug Deliv Rev, 2017,122:74-83.
doi: 10.1016/j.addr.2017.05.010 pmid: 28526591
[17] Chu C, Deng J, Xiang L , et al. Evaluation of epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts[J]. Mater Sci Eng C Mater Biol Appl, 2016,67:386-394.
doi: 10.1016/j.msec.2016.05.021
[18] Chu CY, Deng J, Man Y , et al. Evaluation of nanohydroxyapaptite (nano-HA) coated epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes[J]. Mater Sci Eng C Mater Biol Appl, 2017,78:258-264.
doi: 10.1016/j.msec.2017.04.069
[19] Chu CY, Deng J, Hou Y , et al. Application of PEG and EGCG modified collagen-base membrane to promote osteoblasts proliferation[J]. Mater Sci Eng C Mater Biol Appl, 2017,76:31-36.
doi: 10.1016/j.msec.2017.02.157 pmid: 28482532
[20] Raphael I, Nalawade S, Eagar TN , et al. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases[J]. Cytokine, 2015,74(1):5-17.
doi: 10.1016/j.cyto.2014.09.011 pmid: 25458968
[21] Walker JA, Mckenzie AN . T(H)2 cell development and function[J]. Nat Rev Immunol, 2018,18(2):121-133.
doi: 10.1038/nri.2017.118 pmid: 29082915
[22] Martinez FO, Gordon S . The M1 and M2 paradigm of macrophage activation: time for reassessment[J]. F1000Prime Reports, 2014,6:13.
doi: 10.12703/P6-13 pmid: 24669294
[23] Mantovani A, Sica A, Sozzani S , et al. The chemokine system in diverse forms of macrophage activation and polarization[J]. Trends Immunol, 2004,25(12):677-686.
doi: 10.1016/j.it.2004.09.015 pmid: 15530839
[24] Croes M, Oner FC, Van Neerven D , et al. Proinflammatory T cells and IL-17 stimulate osteoblast differentiation[J]. Bone, 2016,84:262-270.
doi: 10.1016/j.bone.2016.01.010 pmid: 26780388
[25] Spiller KL, Anfang RR, Spiller KJ , et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds[J]. Biomaterials, 2014,35(15):4477-4488.
doi: 10.1016/j.biomaterials.2014.02.012 pmid: 4000280
[26] Howard M, Paul WE . Interleukins for B lymphocytes[J]. Lymphokine Res, 1982,1(1):1-4.
doi: 10.1007/BF02918413 pmid: 6985399
[27] Nelms K, Keegan AD, Zamorano J , et al. The IL-4 receptor: signaling mechanisms and biologic functions[J]. Annu Rev Immunol, 1999,17:701-738.
doi: 10.1146/annurev.immunol.17.1.701
[28] Mantovani A, Biswas SK, Galdiero MR , et al. Macrophage plasticity and polarization in tissue repair and remodelling[J]. J Pathol, 2013,229(2):176-185.
doi: 10.1002/path.4133 pmid: 23096265
[29] Chen F, Liu Z, Wu W , et al. An essential role for TH2-type responses in limiting acute tissue damage during experimental helminth infection[J]. Nat Med, 2012,18(2):260-266.
doi: 10.1038/nm.2628
[30] Klann JE, Kim SH . Integrin activation controls regulatory t cell-mediated peripheral tolerance[J]. J Immunol, 2018,201(4), Doi: https://doi.org/10.4049/jimmunol.1800112.
doi: 10.4049/jimmunol.1800112
[31] Santoni de Sio FR, Passerini L, Restelli S , et al. Role of human FOXP3 in early thymic maturation and peripheral T cell homeostasis[J]. J Allergy Clin Immunol, 2018,pii: S0091-6749(18) 30617-1. doi: 10.1016/j.jaci.2018.03.015.
doi: 10.1016/j.jaci.2018.03.015 pmid: 29705245
[32] Chapman NM, Zeng H, Nguyen T , et al. mTOR coordinates transcriptional programs and mitochondrial metabolism of activated T-Reg subsets to protect tissue homeostasis[J]. Nat Commun, 2018,9(1):12095.
[33] Coombes JL, Siddiqui KR, Arancibia-Cárcamo CV , et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism[J]. J Exp Med, 2007,204(8):1757-1764.
doi: 10.1084/jem.20070590
[34] Kim YG, Lee CK, Nah SS , et al. Human CD4+CD25+ regulatory T cells inhibit the differentiation of osteoclasts from peripheral blood mononuclear cells[J]. Biochem Biophys Res Commun, 2007,357(4):1046-1052.
doi: 10.1016/j.bbrc.2007.04.042
[35] Zaiss MM, Axmann R, Zwerina J , et al. Treg cells suppress osteoclast formation: a new link between the immune system and bone[J]. Arthritis Rheum, 2007,56(12):4104-4112.
doi: 10.1002/art.v56:12
[36] Gu C, Wu L, Li X . IL-17 family: cytokines, receptors and signaling[J]. Cytokine, 2013,64(2):477-485.
doi: 10.1016/j.cyto.2013.07.022 pmid: 3867811
[37] Cua DJ, Tato CM . Innate IL-17-producing cells: the sentinels of the immune system[J]. Nat Rev Immunol, 2010,10(7):479-489.
doi: 10.1038/nri2800 pmid: 20559326
[38] Reynolds JM, Angkasekwinai P, Dong C . IL-17 family member cytokines: regulation and function in innate immunity[J]. Cytokine Growth Factor Rev, 2010,21(6):413-423.
doi: 10.1016/j.cytogfr.2010.10.002 pmid: 3008409
[39] Reinke S, Geissler S, Taylor WR , et al. Terminally differentiated CD8( +) T cells negatively affect bone regeneration in humans[J]. Sci Transl Med, 2013, 5(177): 177ra36.
doi: 10.1126/scitranslmed.3004754 pmid: 23515078
[40] Gay D, Kwon O, Zhang ZK , et al. Fgf9 from dermal gamma delta T cells induces hair follicle neogenesis after wounding[J]. Nat Med, 2013,19(7):916-923.
doi: 10.1038/nm.3181 pmid: 23727932
[41] Witherden DA, Watanabe M, Garijo OA , et al. The CD100 receptor interacts with its plexin B2 ligand to regulate epidermal gamma delta T cell function[J]. Immunity, 2012,37(2):314-325.
[1] XIAO Wenlan,HU Chen,RONG Sheng′an,QU Yili. Clinical application of autogenous dentin as a bone graft material [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(6): 394-398.
[2] REN Lizhi,SUN Rui. New progress in the clinical application of GBR membrane materials [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(6): 404-408.
[3] LIN Xiaoping,HAN Yakun. The role of B cell osteoimmunity in periodontitis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(4): 205-213.
[4] WANG Yamin,ZHOU Zhen,DAO Junfeng,CHEN Qiyue,LIU Wenjing,SONG Guangbao. Evaluation of the effect of concentrated growth factor in guided bone regeneration in maxillary anterior tooth defects [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(4): 236-240.
[5] ZHOU Wen,PENG Xian,CHENG Lei. Research progress on factors affecting bacterial adhesion on the oral implant surface [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(2): 102-106.
[6] YE Qingsong, HU Fengting, LUO Lihua, Maria Troulis. Research and application of stem cell-derived exosomes in regenerative medicine [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(1): 1-10.
[7] JIANG Xiaowen,HUANG Huaqing,CHEN Jinyong,PENG Haiyan. Experimental study of periostin promoting rapid distraction osteogenesis of the rabbit mandible [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(9): 551-556.
[8] WEI Shimin,WANG Yuanjing,HUANG Wen,CHEN Yifan,YANG Renli,QU Yili. Research progress in the regulation of macrophages in foreign body reaction in bone tissue repair [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(9): 591-597.
[9] REN Qingyuan,HE Wulin,WANG Qing,CHU Hongxing,LIN Haiyan. Effect of endoplasmic reticulum stress on the osteogenic differentiation of periodontal ligament cells under continuous static pressure [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(8): 485-489.
[10] LIU Qian,LAN Lufang,YAN Junyi,TIAN Weidong,GUO Shujuan. Research on the surface structure of a dentin matrix with complete demineralization and incomplete demineralization and the osteogenic property promotion of human periodontal ligament cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(3): 159-166.
[11] WEI Shimin,WANG Yuanjing,HUANG Wen,QU Yili. Research progress on extracellular vesicles and bone regeneration [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(2): 110-114.
[12] WANG Ye,LIN Xiaoping. Research progress on the common risk factors and related mechanisms of periodontitis and osteoporosis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(12): 794-798.
[13] WU Qian,WANG Jian,NIU Li,YANG Xue,TANG Xiaolin. The role of vitamin D and its analogues in the treatment of oral mucosal diseases and periodontal diseases [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(12): 804-808.
[14] ZHOU Zheng,QI Xia,YANG Dongru. Host modulation therapy in periodontitis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(11): 681-688.
[15] TAO Qian , HUANG Yun. Analysis of causes for non-stone parotid obstructions [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(11): 689-694.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hong-chang LAI,Jun-yu SHI. Maxillary sinus floor elevation[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(1): 8 -12 .
[2] Pin ZHOU, Yang-fei LI. MRI study of temporomandibular joint disc position in asymptomatic volunteers[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(4): 239 -244 .
[3] Xinxin XIA, Fang FANG, Lijuan CHENG. Shaping ability of Pathfile and WaveOne in simulated root canals[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(6): 365 -368 .
[4] Yuanhong LI, Xinyi FANG, Yu QIU, Lei CHENG. Experimental study on the effects of green tea on salivary flow rate and pH value[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(9): 560 -564 .
[5] Chengzhang LI. Masticatory muscles in occlusion[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(12): 755 -760 .
[6] . [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(1): 1 .
[7] Zhirong WU, Shiguang Huang. Research progress on the etiology, clinical examination and treatment of peri-implantitis[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(6): 401 -405 .
[8] Xiaowu YAO, Shisheng CHEN, Zizheng LU, Minxiao LIN. Clinical report and literature review on the amyloidosis of salivary glands[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(8): 533 -536 .
[9] Lan LIAO, Lijun ZENG. Updated research on digitalization in aesthetic restoration[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(7): 409 -414 .
[10] Yu LU, Chengxia LIU, Zhongjun LIU. Role of TRAF6 in inflammatory responses of human osteoblast-like cells with Enterococcusfaecalis[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(7): 420 -425 .
This work is licensed under a Creative Commons Attribution 3.0 License.