Journal of Prevention and Treatment for Stomatological Diseases ›› 2018, Vol. 26 ›› Issue (10): 613-620.DOI: 10.12016/j.issn.2096-1456.2018.10.001
• Expert Forum • Previous Articles Next Articles
Jiang CHEN1(),Xuxi CHEN2,Lin ZHOU1
Received:
2018-03-28
Revised:
2018-04-18
Online:
2018-10-20
Published:
2018-10-20
作者简介:
陈江,教授,主任医师,博士生导师。于2000 年被国家留学基金委员会公派赴美国哈佛大学牙学院和塔夫茨大学新英格兰医学中心访问研究。现任福建医科大学口腔医学院及附属口腔医院院长,兼任中华口腔医学会常务理事、中华口腔医学会口腔种植专业委员会副主任委员、中华口腔医学会口腔肿瘤学组成员、福建省口腔医学会会长、福建省口腔医学会口腔种植专业委员会顾问、中国医师协会口腔医师分会维权组成员、国际口腔种植学会(ITI)专家组成员。国务院政府特殊津贴享受者,福建省百千万人才工程人选,福建医科大学学科带头人。主持国家自然基金、福建省发改委产业技术开发项目、福建省科技重大科研项目、福建省教育厅重点项目、福建省自然科学基金项目等科研课题 10 余项,获福建省科技进步二等奖 1 项,福建省医学科技三等奖 1项,新型实用与发明专利三项。主编、主译、参编学术专著 6部。
基金资助:
CLC Number:
Jiang CHEN,Xuxi CHEN,Lin ZHOU. The effect of the osteoimmunomodulatory mechanism on implant osseointegration and bone biomaterials induced bone regeneration[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(10): 613-620.
陈江,陈旭晞,周麟. 骨免疫调节机制对种植体骨结合及骨生物材料引导骨再生的影响[J]. 口腔疾病防治, 2018, 26(10): 613-620.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.kqjbfz.com/EN/10.12016/j.issn.2096-1456.2018.10.001
[1] | Brown BN, Badylak SF . Expanded applications, shifting paradigms and an improved understanding of host-biomaterial interactions[J]. Acta Biomater, 2013,9(2):4948-4955. |
[2] |
Franz S, Rammelt S, Scharnweber D , et al. Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials[J]. Biomaterials, 2011,32(28):6692-6709.
DOI |
[3] | Kobayashi SD, Voyich JM, Burlak C , et al. Neutrophils in the innate immune response[J]. Arch Immunol Ther Exp (Warsz), 2005,53(6):505-517. |
[4] |
Anderson JM, Rodriguez A, Chang DT . Foreign body reaction to biomaterials[J]. Semin Immunol, 2008,20(2):86-100.
DOI URL PMID |
[5] |
Tang L, Jennings TA, Eaton JW . Mast cells mediate acute inflammatory responses to implanted biomaterials[J]. Proc Natl Acad Sci U S A, 1998,95(15):8841-8846.
DOI URL PMID |
[6] |
樊牮, 邹耿森, 陈江 . 钛种植体表面纳米改性及其与机体免疫应答[J]. 国际口腔医学杂志, 2014,41(6):691-693.
DOI URL |
[7] |
Hart PH, Bonder CS, Balogh J , et al. Differential responses of human monocytes and macrophages to IL-4 and IL-13[J]. J Leukoc Biol, 1999,66(4):575-578.
DOI URL PMID |
[8] | Chen Z, Wu C, Yuen J , et al. Influence of osteocytes in the in vitro and in vivo β-tricalcium phosphate-stimulated osteogenesis[J]. J Biomed Mater Res A, 2014,102(8):2813-2823. |
[9] |
Ma M, Liu WF, Hill PS , et al. Development of cationic polymer coatings to regulate foreign-body responses[J]. Adv Mater, 2011,23(24):H189-H194.
DOI |
[10] |
Hess K, Ushmorov A, Fiedler J , et al. TNFalpha promotes osteogenic differentiation of human mesenchymal stem cells by triggering the NF-kappaB signaling pathway[J]. Bone, 2009,45(2):367-376.
DOI |
[11] | Guihard P, Boutet MA , Brounais-Le Royer B , et al.Oncostatin m, an inflammatory cytokine produced by macrophages, supports intramembranous bone healing in a mouse model of tibia injury[J]. Am J Pathol, 2015,185(3):765-775. |
[12] |
Gilbert L, He X, Farmer P , et al. Inhibition of osteoblast differentiation by tumor necrosis factor-α[J]. Endocrinology, 2000,141(11):3956-3964.
DOI URL PMID |
[13] |
Feldmann M, Maini RN . Anti-TNF therapy, from rationale to standard of care: what lessons has it taught us[J]. J Immunol, 2010,185(2):791-794.
DOI URL PMID |
[14] | Liu Y, Wang L, Kikuiri T , et al. Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α[J]. Nat Med, 2011,17(12):1594-1601. |
[15] | Chang J, Liu F, Lee M , et al. NF-κB inhibits osteogenic differentiation of mesenchymal stem cells by promoting β-catenin degradation[J]. Proc Natl Acad Sci U S A, 2013,110(23):9469-9474. |
[16] | Yamashita M, Otsuka F, Mukai T , et al. Simvastatin inhibits osteoclast differentiation induced by bone morphogenetic protein-2 and RANKL through regulating MAPK, AKT and Src signaling[J]. Regul Pept, 2010,162(1-3):99-108. |
[17] |
Arron JR, Choi Y . Osteoimmunology - bone versus immune system[J]. Nature, 2000,408(6812):535-536.
DOI URL |
[18] | Zaidi M . Skeletal remodeling in health and disease[J]. Nat Med, 2007,13(7):791-801. |
[19] |
Meguid MH, Hamad YH, Swilam RS , et al. Relation of interleukin-6 in rheumatoid arthritis patients to systemic bone loss and structural bone damage[J]. Rheumatol Int, 2013,33(3):697-703.
DOI |
[20] | Devlin RD, Reddy SV, Savino R , et al. IL-6 mediates the effects of IL-1 or TNF, but not PTHrP or 1,25(OH)2D3, on osteoclast-like cell formation in normal human bone marrow cultures[J]. J Bone Miner Res, 1998,13(3):393-399. |
[21] | Palmqvist P, Persson E, Conaway HH , et al. IL-6, leukemia inhibitory factor, and oncostatin M stimulate bone resorption and regulate the expression of receptor activator of NF-kappa B ligand, osteoprotegerin, and receptor activator of NF-kappa B in mouse calvariae[J]. J Immunol, 2002,169(6):3353-3362. |
[22] | Sims NA, Quinn JM . Osteoimmunology: oncostatin M as a pleiotropic regulator of bone formation and resorption in health and disease[J]. Bonekey Rep, 2014,3:527. |
[23] |
Boyce BF, Xing LP . Biology of RANK, RANKL, and osteoprotegerin[J]. Arthritis Res Ther, 2007,9(Suppl 1):1.
DOI URL PMID |
[24] |
Wright HL, Mccarthy HS, Middleton J , et al. RANK, RANKL and osteoprotegerin in bone biology and disease[J]. Curr Rev Musculoskelet Med, 2009,2(1):56-64.
DOI URL PMID |
[25] | Li Y, Toraldo G, Li A , et al. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo[J]. Blood, 2007,109(9):3839-3848. |
[26] |
Pacifici R . The immune system and bone[J]. Arch Biochem Biophys, 2010,503(1):41-53.
DOI URL PMID |
[27] | Gordon S, Helming L, Estrada FOM . Alternative activation of macrophages: concepts and prospects[M] // Macrophages: Biology and Role in the Pathology of Diseases. Springer New York, 2014: 59-76. |
[28] |
Martinez FO, Gordon S . The M1 and M2 paradigm of macrophage activation: time for reassessment[J]. F1000Prime Rep, 2014,6:13.
DOI URL PMID |
[29] | Guihard P, Danger Y, Brounais B , et al. Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling[J]. Stem Cells, 2012,30(4):762-772. |
[30] | Malekshah AK, Moghaddam AE, Daraka SM . Comparison of conditioned medium and direct co-culture of human granulosa cells on mouse embryo development[J]. Indian J Exp Biol, 2006,44(3):189-192. |
[31] | Spiller KL, Nassiri S, Witherel CE , et al. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds[J]. Biomaterials, 2015,37:194-207. |
[32] |
Alfarsi MA, Hamlet SM, Ivanovski S . Titanium surface hydrophilicity modulates the human macrophage inflammatory cytokine response[J]. J Biomed Mater Res A, 2014,102(1):60-67.
DOI URL PMID |
[33] | Trindade R, Albrektsson T, Wennerberg A . Current concepts for the biological basis of dental implants: foreign body equilibrium and osseointegration dynamics[J]. Oral Maxillofac Surg Clin North Am, 2015,27(2):175-183. |
[34] | Vasconcelos DP, Costa M, Amaral IF , et al. Modulation of the inflammatory response to chitosan through M2 macrophage polarization using pro-resolution mediators[J]. Biomaterials, 2015,37:116-123. |
[35] |
Luo X, Barbieri D, Davison N , et al. Zinc in Calcium phosphate mediates bone induction: in vitro and in vivo model[J]. Acta Biomater, 2014,10(1):477-485.
DOI URL PMID |
[36] | Bouvet-Gerbettaz S, Boukhechba F, Balaguer T , et al. Adaptive immune response inhibits ectopic mature bone formation induced by BMSCs/BCP/plasma composite in immune-competent mice[J]. Tissue Eng Part A, 2014,20(21-22):2950-2962. |
[37] |
Gamblin AL, Brennan MA, Renaud A , et al. Bone tissue formation with human mesenchymal stem cells and biphasic Calcium phosphate ceramics: the local implication of osteoclasts and macrophages[J]. Biomaterials, 2014,35(36):9660-9667.
DOI |
[38] |
Miron RJ, Zohdi H, Fujioka-Kobayashi M , et al. Giant cells around bone biomaterials: Osteoclasts or multi-nucleated giant cells[J]. Acta Biomater, 2016,46:15-28.
DOI URL PMID |
[39] |
Dobrovolskaia MA, Mcneil SE . Immunological properties of engineered nanomaterials[J]. Nat Nanotechnol, 2007,2(8):469-478.
DOI URL PMID |
[40] | Weiss L . The cell periphery[J]. Int Rev Cytol, 1969,26(3789):63-105. |
[41] | Chen X, Wang W, Cheng S , et al. Mimicking bone nanostructure by combining block copolymer self-assembly and 1D crystal nucleation[J]. ACS Nano, 2013,7(9):8251-8257. |
[42] |
Tsimbouri P, Gadegaard N, Burgess K , et al. Nanotopographical effects on mesenchymal stem cell morphology and phenotype[J]. J Cell Biochem, 2014,115(2):380-390.
DOI URL PMID |
[43] |
Dang Y, Zhang L, Song W , et al. In vivo osseointegration of Ti implants with a strontium-containing nanotubular coating[J]. Int J Nanomedicine, 2016,11:1003-1011.
DOI URL PMID |
[44] |
Smith BS, Capellato P, Kelley SA , et al. Reduced in vitro immune response on Titania nanotube arrays compared to Titanium surface[J]. Biomater Sci, 2013,1(3):322-332.
DOI URL |
[45] | Lü WL, Wang N, Gao P , et al. Effects of anodic Titanium dioxide nanotubes of different diameters on macrophage secretion and expression of cytokines and chemokines[J]. Cell Prolif, 2015,48(1):95-104. |
[46] |
Wilkinson A, Hewitt RN, Mcnamara LE , et al. Biomimetic microtopography to enhance osteogenesis in vitro[J]. Acta Biomater, 2011,7(7):2919-2925.
DOI URL PMID |
[47] |
Davison MJ, Mcmurray RJ, Smith CA , et al. Nanopit-induced osteoprogenitor cell differentiation: the effect of nanopit depth[J]. J Tissue Eng, 2016,7:2041731416652778.
DOI URL PMID |
[48] |
Zhang Y, Venugopal JR, El-Turki A , et al. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering[J]. Biomaterials, 2008,29(32):4314-4322.
DOI |
[49] |
Bartneck M, Heffels KH, Pan Y , et al. Inducing healing-like human primary macrophage phenotypes by 3D hydrogel coated nanofibres[J]. Biomaterials, 2012,33(16):4136-4146.
DOI URL PMID |
[50] | Wang K, Hou WD, Wang X , et al. Overcoming foreign-body reaction through nanotopography: biocompatibility and immunoisolation properties of a nanofibrous membrane[J]. Biomaterials, 2016,102:249-258. |
[51] |
Saino E, Focarete ML, Gualandi C , et al. Effect of electrospun fiber diameter and alignment on macrophage activation and secretion of proinflammatory cytokines and chemokines[J]. Biomacromolecules, 2011,12(5):1900-1911.
DOI |
[52] | Sjöström T, Mcnamara LE, Meek RM , et al. 2D and 3D nanopatterning of Titanium for enhancing osteoinduction of stem cells at implant surfaces[J]. Adv Healthc Mater, 2013,2(9):1285-1293. |
[53] |
Mohiuddin M, Pan HA, Hung YC , et al. Control of growth and inflammatory response of macrophages and foam cells with nanotopography[J]. Nanoscale Res Lett, 2012,7(1):394 .
DOI URL PMID |
[54] |
Fujita S, Ohshima M, Iwata H . Time-lapse observation of cell alignment on nanogrooved patterns[J]. J R Soc Interface, 2009,6(Suppl 3):S269-S277.
DOI URL PMID |
[55] |
Zhu B, Lu Q, Yin J , et al. Alignment of osteoblast-like cells and cell-produced collagen matrix induced by nanogrooves[J]. Tissue Eng, 2005,11(5/6):825-834.
DOI URL PMID |
[56] |
Lamers E, Walboomers XF, Domanski M , et al. In vitro and in vivo evaluation of the inflammatory response to nanoscale grooved substrates[J]. Nanomedicine, 2012,8(3):308-317.
DOI URL PMID |
[57] |
Pujari S, Hoess A, Shen J , et al. Effects of nanoporous alumina on inflammatory cell response[J]. J Biomed Mater Res A, 2014,102(11):3773-3780.
DOI URL PMID |
[58] | Chen Z, Ni S, Han S , et al. Nanoporous microstructures mediate osteogenesis by modulating the osteo-immune response of macrophages[J]. Nanoscale, 2017,9(2):706-718. |
[59] | Chu CY, Deng J, Sun XC , et al. Collagen membrane and immune response in guided bone regeneration: recent progress and perspectives[J]. Tissue Eng Part B Rev, 2017,23(5):421-435. |
[60] |
Chu CY, Deng J, Hou Y , et al. Application of PEG and EGCG modified collagen-base membrane to promote osteoblasts proliferation[J]. Mater Sci Eng C Mater Biol Appl, 2017,76:31-36.
DOI URL PMID |
[61] | Ramazanoglu M, Lutz R, Ergun C , et al. The effect of combined delivery of recombinant human bone morphogenetic protein-2 and recombinant human vascular endothelial growth factor 165 from biomimetic calcium-phosphate-coated implants on osseointegration[J]. Clin Oral Implants Res, 2011,22(12):1433-1439. |
[62] | Von Wilmowsky C, Moest T, Nkenke E , et al. Implants in bone: part I. A current overview about tissue response, surface modifications and future perspectives[J]. Oral Maxillofac Surg, 2014,18(3):243-257. |
[63] | Shim DW, Heo KH, Kim YK , et al. Anti-Inflammatory action of an antimicrobial model peptide that suppresses the TRIF-Dependent signaling pathway via inhibition of Toll-Like receptor 4 endocytosis in Lipopolysaccharide-Stimulated macrophages[J]. PLoS One, 2015,10(5):e0126871. |
[64] |
Liu Y, Xia X, Xu L , et al. Design of hybrid β-hairpin peptides with enhanced cell specificity and potent anti-inflammatory activity[J]. Biomaterials, 2013,34(1):237-250.
DOI |
[65] |
Veldhuizen EJ, Schneider VA, Agustiandari H , et al. Antimicrobial and immunomodulatory activities of PR-39 derived peptides[J]. PLoS One, 2014,9(4):e95939
DOI URL PMID |
[66] | Zhou L, Lai Y, Huang W , et al. Biofunctionalization of microgroove Titanium surfaces with an antimicrobial peptide to enhance their bactericidal activity and cytocompatibility[J]. Colloids Surf B Biointerfaces, 2015,128:552-560. |
[1] | LIU Li,ZHOU Yan,ZHANG Daling,WANG Yuanyuan. Two methods of treatment for skeletal Class Ⅲ malocclusion on airway changes before and after clinical research [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(8): 541-547. |
[2] | WANG Chengyu,FAN Yawei,WANG Jue. Comparison of platelet rich fibrin and acellular dermal matrix in repairing rabbits′ oral mucosal defects [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(7): 442-448. |
[3] | SHAN Chao,WANG Tingting,ZHAO Jin. Research progress on the correlation between interleukin-18 and chronic periodontitis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(7): 485-489. |
[4] | ZHOU Anqi,LIU Jiayi,JIA Yinan,XIANG Lin. Research progress on the Hippo-YAP signaling pathway mediated osteoimmunology in modulating implant osseointegration [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(5): 334-339. |
[5] | WANG Min,JIANG Nan,ZHU Songsong. A novel biomimetic micro/nano hierarchical interface of titanium enhances adhesion, proliferation and osteogenic differentiation of bone marrow mesenchymal cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(4): 226-233. |
[6] | DENG Yujie,YANG Xiaobin,CHEN Hao,LAI Jinhuan,ZHOU Miao. 1 429 cases treated with nitrous oxide inhalation sedation in dental clinic: a retrospective study [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(4): 249-253. |
[7] | YUAN Quan. Dental implant treatment for patients with chronic kidney disease [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(3): 145-150. |
[8] | LI Jiesen,LIN Zhenxiang,WU Dong,ZHENG Zhiqiang,LIN Jie. Finite element analysis of the stress distribution of dental implant crowns with different all-ceramic materials and thicknesses [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(3): 166-170. |
[9] | ZHAO Yaqin,LIU Aipeng,CEN Feng,YANG Kaiwen,LI Yanfang,DENG Wenzheng. Research on the accuracy of dynamic real-time navigation and digital guide navigation implanting techniques [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(3): 178-183. |
[10] | WANG Anxun. Detection and significance of immune function in oral mucosa-associated diseases [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(2): 73-80. |
[11] | LIN Xi,LI Shaobing,DING Xianglong,XU Shulan. Application of the socket shield technique and its potential risks [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(2): 115-118. |
[12] | SHI Shaojie,LIU Xiangdong,SONG Yingliang. The effect of hypoglycemic drugs on bone metabolism and dental implantation in type 2 diabetes mellitus patients [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(2): 110-114. |
[13] | WANG Yanlin,SUN Xiaojun. A study of the maxillary sinus lateral wall thickness using cone-beam CT [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(11): 761-765. |
[14] | JIN Zhuohua,XIE Lili,LI Yuyang,JIANG Jiayang,OU Yanzhen,MENG Weiyan. Research progress on the relationship between occlusal overload and peri-implantitis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(11): 782-786. |
[15] | WANG Guangchao,LIU Lijun,JIANG Weiwen. Significance of phosphoinositol metabolism by DNA methylation may contribute in oral leukoplakia carcinogenesis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(10): 677-683. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
This work is licensed under Creative Commons Attribution 3.0 License.