Journal of Prevention and Treatment for Stomatological Diseases ›› 2018, Vol. 26 ›› Issue (11): 688-698.doi: 10.12016/j.issn.2096-1456.2018.11.002

• Expert Forum • Previous Articles     Next Articles

The concept of “osteoimmunomodulation” and its application in the development of “osteoimmune-smart” bone substitute materials

Zetao CHEN(),Xiaoshuang WANG,Linjun ZHANG   

  1. Department of Oral Implantology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2018-06-12 Revised:2018-06-21 Online:2018-11-20 Published:2018-11-19

Abstract:

The traditional biological principle for developing bone biomaterials is to directly stimulate the osteogenic differentiation of osteoblastic lineage cells, the direct effector cells for osteogenesis. This strategy has been successful for the development of bone biomaterials. However, recent progress in bone biology has revealed the vital role of the local bone microenvironment, especially the immune environment, in controlling osteogenesis. Interdisciplinary osteoimmunology has found that the osteoimmune and skeletal systems are closely related, sharing numerous cytokines and regulators. In addition, immune cells play an important role in the physiological and pathological processes of the skeletal system, suggesting that neglecting the importance of the immune response is a major shortcoming of the traditional strategy. Based on this principle, we propose a novel “osteoimmunomodulation”-based strategy to meet the strict requirements of new-generation bone biomaterials: instead of directly regulating the osteogenic differentiation of osteoblastic lineage cells, we should focus more on manipulating the responses of immune cells and developing biomaterials to induce an immune environment that provides conditions that balance osteogenesis and osteoclastogenesis for optimal osseointegration. This article reviews the recent progress on osteoimmunology and immunomodulatory biomaterials for the generation of the “osteoimmunomodulation” concept. Additionally, the outcomes of “osteoimmunomodulation”-related studies have been summarized to guide the development of advanced “osteoimmune-smart” bone substitute materials.

Key words: Bone regeneration, Osteogenic differentiation, Bone substitute materials, Immune microenvironment, Osteoimmunomodulation, Marcophage

CLC Number: 

  • R78

Figure 1

Strategy for developing bone substitute biomaterials"

Figure 2

Effect of immune cells on bone dynamics"

Figure 3

Osteoimmunomodulatory properties of bone substitute biomaterials"

Figure 4

Development of bone substitute materials based on osteoimmunomodulation"

[1] Tang D, Tare RS, Yang LY , et al. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration[J]. Biomaterials, 2016,83(1):363-382.
doi: 10.1016/j.biomaterials.2016.01.024 pmid: 26803405
[2] Gong T, Xie J, Liao J , et al. Nanomaterials and bone regeneration[J]. Bone Res, 2015,3(3):123-129.
[3] Oryan A, Alidadi S, Moshiri A , et al. Bone regenerative medicine: classic options, novel strategies, and future directions[J]. J Orthop Surg Res, 2014,9(1):18.
doi: 10.1186/1749-799X-9-18
[4] Kenley RA, Yim K, Abrams J , et al. Biotechnology and bone graft substitutes[J]. Pharm Res, 1993,10(10):1393-1401.
doi: 10.1023/A:1018902720816
[5] García-Gareta E, Coathup MJ, Blunn GW . Osteoinduction of bone grafting materials for bone repair and regeneration[J]. Bone, 2015,81(1):112-121.
doi: 10.1016/j.bone.2015.07.007 pmid: 26163110
[6] Polo-Corrales L, Latorre-Esteves MJ . Scaffold design for bone regeneration[J]. J Nanosci Nanotechnol, 2014,14(1):15-56.
doi: 10.1166/jnn.2014.9127 pmid: 24730250
[7] Fillingham YJ . Bone grafts and their substitutes[J]. Bone Joint J, 2016, 98-B(Suppl 1A):6-9.
doi: 10.1302/0301-620X.98B.36350 pmid: 26733632
[8] Kaur G, Pandey OP, Singh K , et al. A review of bioactive glasses:their structure, properties, fabrication, and apatite formation[J]. J Biomed Mater Res A , 2014,102(1):254-274.
doi: 10.1002/jbm.a.34690 pmid: 23468256
[9] Campana V, Milano G, Pagano E , et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice[J]. J Mater Sci Mater Med, 2014,25(10):2445-2461.
doi: 10.1007/s10856-014-5240-2 pmid: 24865980
[10] Chen Z, Klein T, Murray RZ , et al. Osteoimmunomodulation for the development of advanced bone biomaterials[J]. Mater Today, 2016,19(6):304-321.
doi: 10.1016/j.mattod.2015.11.004
[11] Chen Z, Ni S, Han S , et al. Nanoporous microstructures mediate osteogenesis by modulating the osteo-immune response of macrophages[J]. Nanoscale, 2017,9(2):706-718.
doi: 10.1039/c6nr06421c pmid: 27959374
[12] Schmidt-Bleek K, Schell H, Lienau J , et al. Initial immune reaction and angiogenesis in bone healing[J]. J Tissue Eng Regen Med, 2014,8(2):120-130.
doi: 10.1002/term.1505 pmid: 22495762
[13] Terashima AH . Overview of osteoimmunology[J]. Calcif Tissue Int, 2018,102(5):503-511.
doi: 10.1007/s00223-018-0417-1
[14] Limmer A, Wirtz DC . Osteoimmunology: influence of the immune system on bone regeneration and consumption[J]. Z Orthop Unfall, 2017,155(3):273-280.
doi: 10.1055/s-0043-100100 pmid: 28683495
[15] Charles JM . Bone and the innate immune system[J]. Curr Osteoporos Rep, 2014,12(1):1-8.
doi: 10.1007/s11914-014-0195-2 pmid: 24500569
[16] Freytes DO, Kang JW, Marcos-Campos I , et al. Macrophages modulate the via bility and growth of human mesenchymal stem cells[J]. J Cell Biochem, 2013,114(1):220-229.
doi: 10.1002/jcb.24357 pmid: 22903635
[17] Sigl VJ . Chapter 8-RANK and RANKL of bones, T cells, and the mammary glands[J]. Osteoimmunol, 2016: 121-142.
[18] Walsh MC, Choi Y . Biology of the RANKL-RANK-OPG system in immunity, bone, and beyond[J]. Front Immunol, 2014,5(1):511.
[19] Walsh MC, Takegahara N, Kim H , et al. Updating osteoimmunology: regulation of bone cells by innate and adaptive immunity[J]. Nat Rev Rheumatol, 2018,14(3):146-156.
doi: 10.1038/nrrheum.2017.213 pmid: 29323344
[20] Pacifici R . The immune system and bone[J]. Arch Biochem Biophys, 2010,503(1):41-53.
doi: 10.1016/j.abb.2010.05.027 pmid: 20599675
[21] Ota Y, Niiro H, Ota S , et al. Generation mechanism of RANKL(+) effector memory B cells: relevance to the pathogenesis of rheumatoid arthritis[J]. Arthritis Res Ther, 2016,18(1):67.
doi: 10.1186/s13075-016-0957-6 pmid: 4793760
[22] Guihard P, Danger Y, Brounais B , et al. Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling[J]. Stem Cells, 2012,30(4):762-772.
doi: 10.1016/j.bone.2012.02.242 pmid: 22267310
[23] O'brien CA, Lin SC, Bellido T , et al. Expression levels of gp130 in bone marrow stromal cells determine the magnitude of osteoclastogenic signals generated by IL-6-type cytokines[J]. J Cell Biochem, 2000,79(4):532-541.
doi: 10.1002/1097-4644(20001215)79:4<532::AID-JCB20>3.0.CO;2-U pmid: 10996844
[24] Sims NA, Quinn JM . Osteoimmunology: oncostatin M as a pleiotropic regulator of bone formation and resorption in health and disease[J]. Bonekey Rep, 2014,3(1):527.
doi: 10.1038/bonekey.2014.22 pmid: 4037876
[25] Sato F, Miyaoka Y, Miyajima A , et al. Oncostatin M maintains the hematopoietic microenvironment in the bone marrow by modulating adipogenesis and osteogenesis[J]. PLoS One, 2014,9(12):e116209.
doi: 10.1371/journal.pone.0116209 pmid: 4281151
[26] Xie Z, Tang S, Ye G , et al. Interleukin-6/interleukin-6 receptor complex promotes osteogenic differentiation of bone marrow-derived mesenchymal stem cells[J]. Stem Cell Res Ther, 2018,9(1):13.
doi: 10.1186/s13287-017-0766-0
[27] Fouque-Aubert A, Chapurlat R . Influence of RANKL inhibition on immune system in the treatment of bone diseases[J]. Joint Bone Spine, 2008,75(1):5-10.
doi: 10.1016/j.jbspin.2007.05.004 pmid: 17920324
[28] Schlundt C, Schell H, Goodman SB , et al. Immune modulation as a therapeutic strategy in bone regeneration[J]. J Exp Orthop, 2015,2(1):1-10.
doi: 10.1186/s40634-014-0017-6 pmid: 4545842
[29] Kim TJ, Lee SJ, Cho YN , et al. Immune cells and bone formation in ankylosing spondylitis[J]. Clin Exp Rheumatol, 2012,30(4):469-475.
pmid: 22510234
[30] Geusens PW . Osteoimmunology and osteoporosis[J]. Arthritis Res Ther, 2011,13(5):242-242.
doi: 10.1186/ar3375
[31] Tseng HW, Pitt ME, Glant TT , et al. Inflammation-driven bone formation in a mouse model of ankylosing spondylitis: sequential not parallel processes[J]. Arthritis Res Ther, 2016,18(1):35.
doi: 10.1186/s13075-015-0805-0 pmid: 4734853
[32] Schett G . Osteoimmunology in rheumatic diseases[J]. Arthritis Res Ther, 2009,11(1):210-210.
doi: 10.1186/ar2571
[33] Anderson JM, Rodriguez AD . Foreign body reaction to biomaterials Semin[J]. Immunol, 2008,20(2):86-100.
[34] Williams DF . On the Nature of biomaterials[J]. Biomaterials, 2009,30(30):5897-5909.
doi: 10.1016/j.biomaterials.2009.07.027 pmid: 19651435
[35] Franz S, Rammelt S, Scharnweber D , et al. Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials[J]. Biomaterials, 2011,32(28):6692-6709.
doi: 10.1016/j.biomaterials.2011.05.078
[36] Alexander KA, Chang MK, Maylin ER , et al. Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model[J]. J Bone Miner Res, 2011,26(7):1517-1532.
doi: 10.1002/jbmr.354 pmid: 21305607
[37] Toben D, Schroeder I, El Khassawna T , et al. Fracture healing is accelerated in the absence of the adaptive immune system[J]. J Bone Miner Res, 2011,26(1):113-124.
doi: 10.1002/jbmr.185
[38] El Khassawna T, Serra A, Bucher CH , et al. T lymphocytes influence the mineralization process of bone[J]. Front Immunol, 2017,8(1):562.
doi: 10.3389/fimmu.2017.00562 pmid: 5442173
[39] Könnecke I, Serra A, El Khassawna T , et al. T and B cells participate in bone repair by infiltrating the fracture callus in a two-wave fashion[J]. Bone, 2014,64(Suppl 1):155-165.
doi: 10.1016/j.bone.2014.03.052 pmid: 24721700
[40] Weitzmann MI . Physiological and pathophysiological bone turnover-role of the immune system[J]. Nat Rev Endocrinol, 2016,12(9):518-532.
doi: 10.1038/nrendo.2016.91 pmid: 27312863
[41] Gibon E, Lu LS . Aging inflammation, stem cells, and bone healing[J]. Stem Cell Res Ther, 2016,7(1):1-7.
doi: 10.1186/s13287-015-0253-4 pmid: 4700621
[42] Mokarram NR . A perspective on immunomodulation and tissue repair[J]. Ann Biomed Eng, 2014,42(2):338-351.
doi: 10.1007/s10439-013-0941-0 pmid: 24297492
[43] Hotchkiss KM, Reddy GB, Hyzy SL , et al. Titanium surface characteristics, including topography and wettability, alter macrophage activation[J]. Acta Biomater, 2016,31(1):425-434.
doi: 10.1016/j.actbio.2015.12.003 pmid: 26675126
[44] Li B, Jiang S, Xie J , et al. Mitigation of inflammatory immune responses with hydrophilic nanoparticles[J]. Angew Chem Int Ed Engl, 2018,57(17):4527-4531.
doi: 10.1002/anie.201710068 pmid: 29436098
[45] Hulshof FFB, Papenburg B, Vasilevich A , et al. Mining for osteogenic surface topographies: in silico design to in vivo osseo-integration[J]. Biomaterials, 2017,137(1):49-60.
doi: 10.1016/j.biomaterials.2017.05.020 pmid: 28535442
[46] Dobrovolskaia MS . Immunological properties of engineered nanomaterials[J]. Nat Nanotechnol, 2007,2(8):469-478.
doi: 10.1038/nnano.2007.223 pmid: 18654343
[47] Lebre F, Hearnden CE . Modulation of immune responses by particulate materials[J]. Adv Mater, 2016,28(27):5525-5541.
doi: 10.1002/adma.201505395 pmid: 27167228
[48] Boehler RM, Graham JG, Shea LD . Tissue engineering tools for modulation of the immune response[J]. Biotechniques, 2011, 51(4): 239-240, 242, 244.
[49] Defife KM, Yun JK, Azeez A , et al. Adhesion and cytokine production by monocytes on poly(2-methacryloyloxyethyl phosphorylcholine-co-alkyl methacrylate)-coated polymers[J]. J Biomed Mater Res A , 1995,29(4):431-439.
doi: 10.1002/jbm.820290403 pmid: 7622528
[50] Takebe J, Champagne CM, Offenbacher S , et al. Titanium surface topography alters cell shape and modulates bone morphogenetic protein 2 expression in the J774A.1 macrophage cell line[J]. J Biomed Mater Res A , 2003,64(2):207-216.
doi: 10.1002/jbm.a.10275 pmid: 12522806
[51] Larissa M, FS S, TN N , et al. Titanium with nanotopography induces osteoblast differentiation by regulating endogenous bone morphogenetic protein expression and signaling pathway[J]. J Cell Biochem, 2016,117(7):1718-1726.
doi: 10.1002/jcb.25469 pmid: 26681207
[52] Tan Y, Li S, Pitt BR , et al. The inhibitory role of CpG immunostimulatory motifs in cationic lipid vector-mediated transgene expression in vivo[J]. Hum Gene Ther, 1999,10(13):2153-2161.
doi: 10.1089/10430349950017149 pmid: 10498247
[53] Zaveri TD, Lewis JS, Dolgova NV , et al. Integrin-directed modulation of macrophage responses to biomaterials[J]. Biomaterials, 2014,35(11):3504-3515.
doi: 10.1016/j.biomaterials.2014.01.007 pmid: 24462356
[54] Sudhakar K, Rao KM, Subha M , et al. Temperature-responsive poly(-vinylcaprolactam-co-hydroxyethyl methacrylate)nanogels for controlled release studies of curcumin[J]. Des Monomers Polym, 2015,18(8):705-713.
doi: 10.1080/15685551.2015.1070497
[55] Laquerriere P, Grandjean-Laquerriere A, Jallot E , et al. Importance of hydroxyapatite particles characteristics on cytokines production by human monocytes in vitro[J]. Biomaterials, 2003,24(16):2739-2747.
doi: 10.1016/S0142-9612(03)00089-9 pmid: 12711520
[56] Malard O, Bouler JM, Guicheux J , et al. Influence of biphasic Calcium phosphate granulometry on bone ingrowth, ceramic resorption, and inflammatory reactions: preliminary in vitro and in vivo study[J]. J Biomed Mater Res, 1999,46(1):103-111.
doi: 10.1002/(SICI)1097-4636(199907)46:1<103::AID-JBM12>3.0.CO;2-Z pmid: 10357141
[57] Rouwkema J, Khademhosseini A . Vascularization and angiogenesis in tissue engineering: beyond creating static networks[J]. Trends Biotechnol, 2016,34(9):733-745.
doi: 10.1016/j.tibtech.2016.03.002 pmid: 27032730
[58] Greiner AM, Jäckel M, Scheiwe AC , et al. Multifunctional polymer scaffolds with adjustable pore size and chemoattractant gradients for studying cell matrix invasion[J]. Biomaterials, 2014,35(2):611-619.
doi: 10.1016/j.biomaterials.2013.09.095 pmid: 24140047
[59] Palsson-Mcdermott EM, Curtis AM, Goel G , et al. Pyruvate kinase M2 regulates HIF-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages[J]. Cell Metab, 2015,21(1):65-80.
doi: 10.1016/j.cmet.2014.12.005 pmid: 25565206
[60] Drager J, Harvey EJ . Hypoxia signalling manipulation for bone regeneration[J]. Expert Rev Mol Med, 2015,17(1):e6.
doi: 10.1017/erm.2015.4 pmid: 25900271
[61] Taniguchi N, Fujibayashi S, Takemoto M , et al. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment[J]. Mater Sci Eng C Mater Bio Appl, 2016,59(1):690-701.
doi: 10.1016/j.msec.2015.10.069 pmid: 26652423
[62] Wang X, Xu S, Zhou S , et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review[J]. Biomaterials, 2016,83:127-141.
doi: 10.1016/j.biomaterials.2016.01.012 pmid: 26773669
[63] De A . Wnt/Ca 2+ signaling pathway: a brief overview [J]. Acta Bioch Et Bioph Sin, 2011,43(10):745-757.
doi: 10.1093/abbs/gmr079
[64] Macleod RJ, Hayes MI . Wnt5a secretion stimulated by the extracellular calcium-sensing receptor inhibits defective Wnt signaling in colon cancer cells[J]. Am J Physiol Gastrointest Liver Physiol, 2007,293(1):G403-G411.
doi: 10.1152/ajpgi.00119.2007 pmid: 17463182
[65] Bernstein H, Sugimoto J, Suzuki-Kakisaka HA . Magnesium decreases inflammatory cytokine production: a novel innate immunomodulatory mechanism[J]. Am J Obstet Gynecol, 2012,206(1, S):S361.
doi: 10.1016/j.ajog.2011.10.841 pmid: 3884513
[66] Chaya A, Yoshizawa S, Verdelis K , et al. In vivo study of Magnesium plate and screw degradation and bone fracture healing[J]. Acta Biomater, 2015,18(1):262-269.
doi: 10.1016/j.actbio.2015.02.010 pmid: 25712384
[67] Haase H, Rink L . Signal transduction in monocytes: the role of Zinc ions[J]. Biometals, 2007,20(3/4):579-585.
doi: 10.1007/s10534-006-9029-8
[68] Shorr E, Carter AC . The usefulness of Strontium as an adjuvant to Calcium in the remineralization of the skeleton in man[J]. Bull Hosp Joint Dis, 1952,13(1):59-66.
pmid: 14935450
[69] Cardemil C, Elgali I, Xia W , et al. Strontium-Doped calcium phosphate and hydroxyapatite granules promote different inflammatory and bone remodelling responses in normal and ovariectomised rats[J]. PLoS One, 2013,8(12):e84932.
doi: 10.1371/journal.pone.0084932 pmid: 3871578
[70] Chen Z, Wu C, Gu W , et al. Osteogenic differentiation of bone marrow MSCs by β-tricalcium phosphate stimulating macrophages via BMP2 signalling pathway[J]. Biomaterials, 2014,35(5):1507-1518.
doi: 10.1016/j.biomaterials.2013.11.014 pmid: 24268199
[71] Wei F, Zhou Y, Wang J , et al. The immunomodulatory role of BMP-2 on macrophages to accelerate osteogenesis[J]. Tissue Eng Part A, 2018,24(7/8):584-594.
doi: 10.1089/ten.TEA.2017.0232 pmid: 28726579
[72] Chen Z, Yuen J, Crawford R , et al. The effect of osteoimmunomodulation on the osteogenic effects of cobalt incorporated β-tricalcium phosphate[J]. Biomaterials, 2015,61:126-138.
doi: 10.1016/j.biomaterials.2015.04.044 pmid: 26001077
[73] Wu C, Chen Z, Yi D , et al. Multidirectional effects of Sr-, Mg-, and Si-containing bioceramic coatings with high bonding strength on inflammation, osteoclastogenesis, and osteogenesis[J]. ACS Appl Mater Interfaces, 2014,6(6):4264-4276.
doi: 10.1021/am4060035 pmid: 24598408
[74] Chen Z, Yi D, Zheng X , et al. Nutrient element-based bioceramic coatings on titanium alloy stimulating osteogenesis by inducing beneficial osteoimmmunomodulation[J]. J Mater Chem B, 2014,2(36):6030-6043.
doi: 10.1039/C4TB00837E
[75] Yuan Xiangwei, Cao Huiliang, Wang Jiaxing , et al. Immunomodulatory effects of calcium and strontium co-doped titanium oxides on osteogenesis[J]. Front Immunol, 2017,8(8):1196.
doi: 10.3389/fimmu.2017.01196 pmid: 29033930
[76] Lu X, Li K, Xie Y , et al. Improved osteogenesis of boron incorporated calcium silicate coatings via immunomodulatory effects[J]. J Biomed Mater Res A, 2018, doi: 10.1002/jbm.a.36456.
[77] Karageorgiou VD . Porosity of 3D biomaterial scaffolds and osteogenesis[J]. Biomaterials, 2005,26(27):5474-5491.
doi: 10.1016/j.biomaterials.2005.02.002
[78] Garg K, Pullen NA, Oskeritzian CA , et al. Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds[J]. Biomaterials, 2013,34(18):4439-4451.
doi: 10.1016/j.biomaterials.2013.02.065 pmid: 23515178
[79] Chen ZT, Bachhuka A, Han SW , et al. Tuning chemistry and topography of nanoengineered surfaces to manipulate immune response for bone regeneration applications[J]. ACS Nano, 2017,11(5):4494-4506.
doi: 10.1021/acsnano.6b07808 pmid: 28414902
[80] Guo R, Merkel AR, Sterling JA , et al. Substrate modulus of 3D-printed scaffolds regulates the regenerative response in subcutaneous implants through the macrophage phenotype and Wnt signaling[J]. Biomaterials, 2015,73:85-95.
doi: 10.1016/j.biomaterials.2015.09.005 pmid: 26406449
[81] Blakney AK, Swartzlander MD, Bryant SJ . The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels[J]. J Biomed Mater Res A, 2012,100(6):1375-1386.
doi: 10.1002/jbm.a.34104 pmid: 22407522
[82] Jasmawati N, Fatihhi SJ, Putra A , et al. Mg-based porous metals as cancellous bone analogous material: a review[J]. J Mater Des Appl, 2017,231(6):544-556.
[83] Chen Z, Mao X, Tan L , et al. Osteoimmunomodulatory properties of magnesium scaffolds coated with β-tricalcium phosphate[J]. Biomaterials, 2014,35(30):8553-8565.
doi: 10.1016/j.biomaterials.2014.06.038
[84] Wu C, Chen Z, Wu Q , et al. Clinoenstatite coatings have high bonding strength, bioactive ion release, and osteoimmunomodulatory effects that enhance in vivo osseointegration[J]. Biomaterials, 2015,71:35-47.
doi: 10.1016/j.biomaterials.2015.08.027 pmid: 26318815
[85] Chen Z, Chen L, Liu R , et al. The osteoimmunomodulatory property of a barrier collagen membrane and its manipulation via coating nanometer-sized bioactive glass to improve guided bone regeneration[J]. Biomater Sci, 2018,6(5):1007-1019.
doi: 10.1039/C7BM00869D
[86] Chu CY, Deng J, Sun XC , et al. Collagen membrane and immune response in guided bone regeneration: recent progress and perspectives[J]. Tissue Eng Part B Rev, 2017,23(5):421-435.
doi: 10.1089/ten.TEB.2016.0463 pmid: 28372518
[87] Subhapradha N, Abudhahir M, Aathira A , et al. Polymer coated mesoporous ceramic for drug delivery in bone tissue engineering[J]. Int J Biol Macromol, 2018,110:65-73.
doi: 10.1016/j.ijbiomac.2017.11.146 pmid: 29197570
[88] Shi M, Chen Z, Farnaghi S , et al. Copper-doped mesoporous silica nanospheres, a promising immunomodulatory agent for inducing osteogenesis[J]. Acta Biomater, 2016,30:334-344.
doi: 10.1016/j.actbio.2015.11.033 pmid: 26596565
[1] XIAO Wenlan,HU Chen,RONG Sheng′an,QU Yili. Clinical application of autogenous dentin as a bone graft material [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(6): 394-398.
[2] REN Lizhi,SUN Rui. New progress in the clinical application of GBR membrane materials [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(6): 404-408.
[3] WANG Yamin,ZHOU Zhen,DAO Junfeng,CHEN Qiyue,LIU Wenjing,SONG Guangbao. Evaluation of the effect of concentrated growth factor in guided bone regeneration in maxillary anterior tooth defects [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(4): 236-240.
[4] WANG Zhiheng,ZUO Jie,WANG Mengqi,ZHU Shaojun,LIU Yishan. miR-214 inhibits the osteogenic differentiation of dental follicle cells in vitro [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(3): 146-152.
[5] YE Qingsong, HU Fengting, LUO Lihua, Maria Troulis. Research and application of stem cell-derived exosomes in regenerative medicine [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(1): 1-10.
[6] LIAO Chunhui,LI Mingfei,YE Jinmei,PENG Wei,CHEN Songling. The regulatory mechanisms of IGF1 in the osteogenic differentiation of canine MSMSCs via BMP2-Smad1/5 signaling pathway [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(1): 16-23.
[7] ZHOU Jiaqi,SHU Linjing,XIONG Yi,ZHANG Yixin,XIANG Lin,WU Yingying. Study on the role of FoxO1 in the regulation of osteoblastic metabolism by 1,25(OH)2D3 in a high glucose environment [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(1): 24-29.
[8] JIANG Xiaowen,HUANG Huaqing,CHEN Jinyong,PENG Haiyan. Experimental study of periostin promoting rapid distraction osteogenesis of the rabbit mandible [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(9): 551-556.
[9] REN Qingyuan,HE Wulin,WANG Qing,CHU Hongxing,LIN Haiyan. Effect of endoplasmic reticulum stress on the osteogenic differentiation of periodontal ligament cells under continuous static pressure [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(8): 485-489.
[10] LIU Qian,LAN Lufang,YAN Junyi,TIAN Weidong,GUO Shujuan. Research on the surface structure of a dentin matrix with complete demineralization and incomplete demineralization and the osteogenic property promotion of human periodontal ligament cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(3): 159-166.
[11] WEI Shimin,WANG Yuanjing,HUANG Wen,QU Yili. Research progress on extracellular vesicles and bone regeneration [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(2): 110-114.
[12] Renli YANG,Yuanjing WANG,Shimin WEI,Wen HUANG,Yufei WANG,Chenyou ZHU,Yili QU. Relationship between T cells and bone regeneration: recent progress and perspectives [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(9): 601-605.
[13] Jing ZHANG, Shuangxi ZHU, Qiong RONG, Wei PENG, Xiang LI, Songling CHEN. Role of miR-27a in the osteogenic differentiation of beagle maxillary sinus membrane stem cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(8): 484-490.
[14] Xinfo PEI, Shu MENG, Yi DING. Current application of concentrated growth factors in periodontal tissue regeneration [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(5): 330-333.
[15] Weimin LIN, Miao CHEN, Chen HU, Yili QU. Progress in the combined application of bone morphogenetic protein-2 and basic fibroblast growth factor in bone tissue engineering [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(5): 325-329.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hong-chang LAI,Jun-yu SHI. Maxillary sinus floor elevation[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(1): 8 -12 .
[2] Pin ZHOU, Yang-fei LI. MRI study of temporomandibular joint disc position in asymptomatic volunteers[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(4): 239 -244 .
[3] Xinxin XIA, Fang FANG, Lijuan CHENG. Shaping ability of Pathfile and WaveOne in simulated root canals[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(6): 365 -368 .
[4] Yuanhong LI, Xinyi FANG, Yu QIU, Lei CHENG. Experimental study on the effects of green tea on salivary flow rate and pH value[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(9): 560 -564 .
[5] Chengzhang LI. Masticatory muscles in occlusion[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(12): 755 -760 .
[6] . [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(1): 1 .
[7] Zhirong WU, Shiguang Huang. Research progress on the etiology, clinical examination and treatment of peri-implantitis[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(6): 401 -405 .
[8] Xiaowu YAO, Shisheng CHEN, Zizheng LU, Minxiao LIN. Clinical report and literature review on the amyloidosis of salivary glands[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(8): 533 -536 .
[9] Lan LIAO, Lijun ZENG. Updated research on digitalization in aesthetic restoration[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(7): 409 -414 .
[10] Yu LU, Chengxia LIU, Zhongjun LIU. Role of TRAF6 in inflammatory responses of human osteoblast-like cells with Enterococcusfaecalis[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(7): 420 -425 .
This work is licensed under a Creative Commons Attribution 3.0 License.