Journal of Prevention and Treatment for Stomatological Diseases ›› 2019, Vol. 27 ›› Issue (2): 74-82.doi: 10.12016/j.issn.2096-1456.2019.02.002

• Expert Forum • Previous Articles     Next Articles

Application of digital technology in diagnosis and treatment of dentofacial deformities

LI Yunfeng,ZHU Songsong()   

  1. State Key Laboratory of Oral Disease&National Clinical Research Center for Oral Diseases, Department of Orthognathic and Joint Surgery, West China Hospital of Stomatology, Sichuan University. Chengdu 610041, China
  • Received:2018-07-26 Revised:2018-09-07 Online:2019-02-20 Published:2019-02-21
  • Contact: Songsong ZHU E-mail:zss_1977@163.com

Abstract:

Dento-maxillofacial deformity refers to an abnormal relationship of the volume or shape of the upper and lower jaw bones with the other bones of the craniofacial area. Its correction mainly involves hard tissues, such as the jaws and teeth. In recent years, digital techniques based on virtual surgery, real-time navigation, and 3D printing have developed rapidly in the area of craniomaxillofacial surgery. Digital technology has advantages for preoperative diagnosis, surgical plan formulation, surgical simulation, intraoperative navigation, effect prediction, doctor-patient communication, and young physician training. The Department of Orthognathic and TMJ Surgery of West China Hospital of Stomatology, Sichuan University, has conducted digitized diagnosis and treatment of dento-facial deformities since 2008 and has established a digital center for the treatment of dentofacial deformities based on equipment such as spiral CT, dental arch laser scanners, facial 3D cameras, virtual surgery software, 3D printers, and sleep-breathing monitoring. The result is a diagnostic and treatment protocol for dentofacial deformity specific to the characteristics of the population of West China. This article combines the latest domestic and foreign literature and comprehensively introduces the application of digital technology for the diagnosis and treatment of dental and maxillofacial deformities.

Key words: Dentofacial deformities, Digital technology, Orthognathic surgery, Joint surgery, Rapid prototyping, Distraction osteogenesis, Mandibular angle plasty

CLC Number: 

  • R78

Figure 1

The digital orthognathic surgery workflow"

Table 1

Comparison of the digital technology and conventional methods used for diagnosis and treatment of dento-facial deformities"

对比项目 传统方法 数字化技术
诊断
基于石膏模型和头影测量片
二维诊断
基于三维重建头颅模型
三维诊断
手术模拟
基于石膏牙模的模型外科
不能真实模拟骨块移动
基于软件的虚拟手术
真实模拟骨块移动
术前准备
制作石膏牙模、面弓转移、上颌架、模型外科、
手工制作咬合板;较费时费力
收集CT、牙弓、面相数据,虚拟手术,打印咬合板及手术导板;较省时省力
术中操作
依靠术者经验操作
依靠咬合板定位骨块
依靠手术导板操作
依靠手术导板定位骨块
术后评价
基于咬合关系和头影测量片
不利于手术效果的反馈
基于三维重建头颅模型
方便进行手术效果的反馈
沟通交流 较抽象、不直观,不利于医患沟通 较形象、直观,利于医患沟通

Figure 2

The 3D-printed surgical templates used for Lefort I osteotomy of the maxilla."

Figure 3

The application of the surgical templates using virtual surgical planning"

Figure 4

The application of the surgical templates in the operation room"

Figure 5

The application of 3D-printed surgical templates to determine the osteotomy line and the location of the distractor"

Figure 6

Mandibular angle plasty"

Figure 7

Three-dimensional CT image reconstruction of the patient"

Figure 8

Flow of virtual surgery for condylar osteochondroma associated with maxillofacial deformity"

[1] Poukens J, Haex J, Riediger D . The use of rapid prototyping in the preoperative planning of distraction osteogenesis of the cranio-maxillofacial skeleton[J]. Comput Aided Surg, 2003,8(3):146-154.
doi: 10.3109/10929080309146049 pmid: 15253367
[2] Kwon TG, Choi JW, Kyung HM , et al. Accuracy of maxillary repositioning in two-jaw surgery with conventional articulator model surgery versus virtual model surgery[J]. Int J Oral Maxillofac Surg, 2014,43(6):732-738.
doi: 10.1016/j.ijom.2013.11.009 pmid: 24462125
[3] Yang X, Hu J, Yin G , et al. Computer-assisted condylar reconstruction in bilateral ankylosis of the temporomandibular joint using autogenous coronoid process[J]. Br J Oral Maxillofac Surg, 2011,49(8):612-617.
doi: 10.1016/j.bjoms.2010.10.015 pmid: 21084137
[4] Shqaidef A, Ayoub AF, Khambay BS . How accurate are rapid prototyped (RP) final orthognathic surgical wafers? A pilot study[J]. Br J Oral Maxillofac Surg, 2014,52(7):609-614.
doi: 10.1016/j.bjoms.2014.04.010 pmid: 24933576
[5] Sun Y, Luebbers HT, Agbaje JO , et al. Accuracy of upper jaw positioning with intermediate splint fabrication after virtual planning in bimaxillary orthognathic surgery[J]. J Craniofac Surg, 2013,24(6):1871-1876.
doi: 10.1097/SCS.0b013e31829a80d9 pmid: 24220365
[6] Sharifi A, Jones R, Ayoub A , et al. How accurate is model planning for orthognathic surgery?[J] Int J Oral Maxillofac Surg, 2008,37:1089-1093.
doi: 10.1016/j.ijom.2008.06.011 pmid: 18760569
[7] Yang X, Hu J, Zhu S , et al. Computer-assisted surgical planning and simulation for condylar reconstruction in patients with osteochondroma[J]. Br J Oral Maxillofac Surg, 2011,49(3):203-208.
doi: 10.1016/j.bjoms.2010.03.004 pmid: 20427106
[8] Li Y, Jiang Y, Ye B , et al. Treatment of dentofacial deformities secondary to osteochondroma of the mandibular condyle using virtual surgical planning and 3-dimensional printed surgical templates[J]. J Oral Maxillofac Surg, 2016,74(2):349-368.
doi: 10.1016/j.joms.2015.06.169 pmid: 26183010
[9] Polley JW, Figueroa AA . Orthognathic positioning system: intraoperative system to transfer virtual surgical plan to operating field during orthognathic surgery[J]. J Oral Maxillofac Surg, 2013,71(5):911-920.
doi: 10.1016/j.joms.2012.11.004 pmid: 23312847
[10] Gennaro P, Chisci G, Aboh IV , et al. Comparative study in orthognathic surgery between Dolphin Imaging software and manual prediction[J]. J Craniofac Surg, 2014,25(4):1577-15778.
doi: 10.1097/SCS.0000000000000820 pmid: 24933308
[11] Power G, Breckon J, Sherriff M , et al. Dolphin imaging software: an analysis of the accuracy of cephalometric digitization and orthognathic prediction[J]. Int J Oral Maxillofac Surg, 2005,34(6):619-626.
doi: 10.1016/j.ijom.2005.04.003
[12] Levine JP, Patel A, Saadeh PB , et al. Computer-aided design and manufacturing in craniomaxillofacial surgery: the new state of the art[J]. J Craniofac Surg, 2012,23(1):288-293.
doi: 10.1097/scs.0b013e318241ba92
[13] Walker F, Ayoub AF, Moos KF , et al. Face bow and articulator for planning orthognathic surgery: 2 articulator[J]. Br J Oral Maxillofac Surg, 2008,46(7):573-578.
doi: 10.1016/j.bjoms.2008.02.016 pmid: 18462853
[14] Walker F, Ayoub AF, Moos KF , et al. Face bow and articulator for planning orthognathic surgery: 1 face bow[J]. Br J Oral Maxillofac Surg, 2008,46(7):567-572.
doi: 10.1016/j.bjoms.2008.02.015 pmid: 18462852
[15] Zizelmann C, Hammer B, Gellrich NC , et al. An evaluation of face-bow transfer for the planning of orthognathic surgery[J]. J Oral Maxillofac Surg, 2012,70(8):1944-1950.
doi: 10.1016/j.joms.2011.08.025 pmid: 22079061
[16] Zinser MJ, Mischkowski RA, Sailer HF , et al. Computer-assisted orthognathic surgery: feasibility study using multiple CAD/CAM surgical splints[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2012,113(5):673-687.
doi: 10.1016/j.oooo.2011.11.009 pmid: 22668627
[17] Zinser MJ, Sailer HF, Ritter L , et al. A paradigm shift in orthognathic surgery? A comparison of navigation, computer-aided designed/computer-aided manufactured splints, and "classic" intermaxillary splints to surgical transfer of virtual orthognathic planning[J]. J Oral Maxillofac Surg, 2013, 71(12): 2151.e1-21.
doi: 10.1016/j.joms.2013.07.007 pmid: 24237776
[18] Zhang N, Liu S, Hu Z , et al. Accuracy of virtual surgical planning in two-jaw orthognathic surgery: comparison of planned and actual results[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2016,122(2):143-151.
doi: 10.1016/j.oooo.2016.03.004 pmid: 27209483
[19] Islam S, Uwadiae N, Ormiston IW . Orthognathic surgery in the management of obstructive sleep apnoea: experience from maxillofacial surgery unit in the United Kingdom[J]. Br J Oral Maxillofac Surg, 2014,52(6):496-500.
doi: 10.1016/j.bjoms.2014.04.002 pmid: 24793413
[20] Kor HS, Yang HJ, Hwang SJ . Relapse of skeletal class III with anterior open bite after bimaxillary orthognathic surgery depending on maxillary posterior impaction and mandibular counterclockwise rotation[J]. J Craniomaxillofac Surg, 2014,42:e230-238.
doi: 10.1016/j.jcms.2013.08.013 pmid: 24954529
[21] Li Y, Jiang Y, Zhang N , et al. Clinical feasibility and efficacy of using virtual surgical planning in bimaxillary orthognathic surgery without intermediate splint[J]. J Craniofac Surg, 2015,26(2):501-505.
doi: 10.1097/SCS.0000000000001530 pmid: 25699539
[22] Ren XC, Li YF, Liu Y , et al. Mandibular symphyseal midline distraction osteogenesis for micrognathia associated with aglossia and situs inversus totalis[J]. Int J Oral Maxillofac Surg, 2017,46(10):1346-1351.
doi: 10.1016/j.ijom.2017.05.019 pmid: 28610820
[23] Ye N, Long H, Zhu S , et al. The accuracy of computer image-guided template for mandibular angle ostectomy[J]. Aesthetic Plast Surg, 2015,39(1):117-123.
doi: 10.1007/s00266-014-0424-1 pmid: 25539985
[24] Li Y, Jiang Y, Ye B , et al. Treatment of dentofacial deformities secondary to osteochondroma of the mandibular condyle using virtual surgical planning and 3-dimensional printed surgical templates[J]. J Oral Maxillofac Surg, 2016,74(2):349-368.
doi: 10.1016/j.joms.2015.06.169 pmid: 26183010
[25] de Riu G, Virdis PI, Meloni SM , et al. Accuracy of computer-assisted orthognathic surgery[J]. J Craniomaxillofac Surg, 2018,46(2):293-298.
doi: 10.1016/j.jcms.2017.11.023 pmid: 29275075
[26] Shaheen E, Coopman R, Jacobs R , et al. Optimized 3D virtually planned intermediate splints for bimaxillary orthognathic surgery: a clinical validation study in 20 patients[J]. J Craniomaxillofac Surg, 2018,46(9):1441-1447.
doi: 10.1016/j.jcms.2018.05.050
[27] Landaeta-Quinones CG, Hernandez N, Zarroug NK . Computer-assisted surgery: applications in dentistry and Oral and Maxillofacial Surgery[J]. Dent Clin North Am, 2018,62(3):403-420.
doi: 10.1016/j.cden.2018.03.009
[28] Ghai S, Sharma Y, Jain N , et al. Use of 3-D printing technologies in craniomaxillofacial surgery: a review[J]. Oral Maxillofac Surg, 2018,22(3):249-259.
doi: 10.1007/s10006-018-0704-z
[29] Naran S, Steinbacher DM, Taylor JA . Current concepts in orthognathic surgery[J]. Plast Reconstr Surg, 2018,141(6):925e-936e.
doi: 10.1097/PRS.0000000000004438 pmid: 29794714
[30] Hatamleh M, Turner C, Bhamrah G , et al. Improved virtual planning for bimaxillary orthognathic surgery[J]. J Craniofac Surg, 2016,27(6):e568-e573.
doi: 10.1097/SCS.0000000000002877 pmid: 27428909
[31] Ritto FG, Schmitt ARM, Pimentel T , et al. Comparison of the accuracy of maxillary position between conventional model surgery and virtual surgical planning[J]. Int J Oral Maxillofac Surg, 2018,47(2):160-166
doi: 10.1016/j.ijom.2017.08.012 pmid: 28950997
[32] Farronato G, Galbiati G, Esposito L , et al. Three-dimensional virtual treatment planning: presurgical evaluation[J]. J Craniofac Surg, 2018,29(5):e433-e437.
doi: 10.1097/SCS.0000000000004455
[33] Pascal E, Majoufre C, Bondaz M , et al. Current status of surgical planning and transfer methods in orthognathic surgery[J]. J Stomatol Oral Maxillofac Surg, 2018,119(3):245-248.
doi: 10.1016/j.jormas.2018.02.001 pmid: 29476926
[34] Woo SY, Lee SJ, Yoo JY , et al. Autonomous bone reposition around anatomical landmark for robot-assisted orthognathic surgery[J]. J Craniomaxillofac Surg, 2017,45(12):1980-1988.
doi: 10.1016/j.jcms.2017.09.001 pmid: 29042168
[1] CUI Linna,JIANG Xiaowen,HUANG Huaqing,CHEN Jinyong. Kaempferol promotes osteogenic differentiation of mouse bone marrow mesenchymal cells under tension stress via the mTORC1 signaling pathway [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(4): 234-240.
[2] LUO Songyuan,WANG Bixia,WANG Xudong. Research progress on shared decision making in maxillofacial plastic surgery and aesthetic surgery [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(10): 701-705.
[3] BIN Zhiwen,WANG Fang,HOU Jinsong. Research progress on the reconstruction of mandibular defects in adolescents [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(10): 711-715.
[4] ZHANG Dan,CAO Yubin,LIN Jie. Clinical observation of inferior alveolar nerve block combined with parecoxib sodium intravenous analgesia after mandible orthognaxillary surgery [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(5): 303-306.
[5] PENG Haiyan,JIANG Xiaowen,HUANG Huaqing,CHEN Jinyong. The role of the mTORC1 signaling pathway during osteogenic differentiation of mouse bone marrow mesenchymal cells under tension stress [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(4): 219-223.
[6] LIU Yanfei,LI Yunfeng,ZHU Songsong. Research on the precision of virtual surgical planning in two-jaw orthognathic surgery [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(1): 30-35.
[7] ZHAO Qiucheng,LIU Hanghang,HE Ze,ZHOU Yingxin,LUO En. Simultaneous distraction osteogenesis of the maxilla and mandible combined with second-stage orthognathic surgery for correction of hemifacial microsomia in adults [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(9): 569-576.
[8] JIANG Xiaowen,HUANG Huaqing,CHEN Jinyong,PENG Haiyan. Experimental study of periostin promoting rapid distraction osteogenesis of the rabbit mandible [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(9): 551-556.
[9] LI Song,SU Rugan. Application of digital technology in orthodontic clinic [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(2): 69-73.
[10] LI Jin,CHEN Jufeng,LIU Shiwei,LI Jiapeng. Application of digital 3D printing technology in repairing mandibular defects with a fibular flap [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(2): 100-103.
[11] WANG Yiping,JIANG Nan,ZHAO Wenli,ZHU Songsong. Establishment and analysis of a diagnosis and treatment database of dental and maxillofacial deformities [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(10): 647-651.
[12] Jing LIU, Kai ZHAO, Xudong WANG, Wei HUANG, Feng WANG, Lan JIA, Yiqun WU. Clinical evaluation of implant-supported prostheses for edentulous patients with ectodermal dysplasia [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(7): 451-455.
[13] Xianwen LIU,Weijian AI. Application of digital surgery for orthognathic surgical planning [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(11): 681-687.
[14] Xianwen LIU, Yunfeng LI, Yao LIU, Songsong ZHU. Surgical treatment of mandibular hypoplasia using inverted-L osteotomy of ramus and iliac creat bone grafting [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(8): 501-505.
[15] Yuanhong XIE, Fangsong QIU, Jun ZHENG, Jinchao HONG, Chao-bin PAN. Investigation of personalized titanium mesh combined with free flap for reconstruction of maxillary defect [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(6): 375-379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHU Song-song, HU Jing. The application of distraction osteogenesis in the temporomandibular joint ankylosis and secondary dentofacial deformities[J]. journal1, 2016, 24(1): 6 -10 .
[2] XU Jing. The influence of the impacted mandibular third molar extraction on the distal periodontal tissue of the mandibular second molar[J]. journal1, 2016, 24(1): 11 -14 .
[3] ZHONG Jiang-long, PAN Ji-yang, CHEN Wei-liang. The evaluation of Eagle syndrome treatment by surgery combined with antidepressant therapy[J]. journal1, 2016, 24(1): 26 -28 .
[4] CHEN Xi, SUN Qin-zhou. The study of colorimetric board of porcelain fused to metal restoration for moderate to severe dental fluorosis[J]. journal1, 2016, 24(1): 33 -36 .
[5] OUYANG Ke-xiong1, LIANG Jun, ZOU Rui, LI Zhi-qiang, BAI Zhi-bao, PIAO Zheng-guo, ZHAO Jian-Jiang.. Ion Torrent RNA-Seq detection and analysis of the long non-coding RNA in tongue squamous cell carcinoma[J]. journal1, 2016, 24(1): 15 -19 .
[6] YU Pei, XUE Jing, ZHANG Xiao-wei, ZHENG Cang-shang. The influence of the roughness of zirconia ceramic surface on microbial attachment[J]. journal1, 2016, 24(1): 20 -25 .
[7] LIU Fang. Clinical assessment of two fissure sealant techniques in children’s dental caries prevention[J]. journal1, 2016, 24(1): 44 -45 .
[8] . [J]. journal1, 2016, 24(1): 49 -52 .
[9] LU Jian-rong, BAN Hua-jie, WANG Dai-you, ZHOU Hui-hui, LONG Ru, QIN Shu-hua. Clinical observation of sternocleidomastoid muscle flaps combined with artificial biological membrane reparing the defects after parotidectomy[J]. journal1, 2016, 24(1): 29 -32 .
[10] LI Bin, HE Xiao-ning, GAO Yuan, HU Yu-ping. Clinical analysis of pain after two kinds of apical stop preparation[J]. journal1, 2016, 24(1): 40 -43 .
This work is licensed under a Creative Commons Attribution 3.0 License.