Journal of Prevention and Treatment for Stomatological Diseases ›› 2019, Vol. 27 ›› Issue (3): 189-193.doi: 10.12016/j.issn.2096-1456.2019.03.009

• Review Articles • Previous Articles     Next Articles

Application of 3D printing technology in preparation of scaffolds for periodontal tissue regeneration

XU Xiongcheng,ZHONG Quan(),LUO Kai   

  1. Stomatological Hospital of Fujian Medical University, Fuzhou 350002, China
  • Received:2018-05-03 Revised:2019-01-10 Online:2019-03-20 Published:2019-03-20
  • Contact: Quan ZHONG E-mail:scott05@126.com

Abstract:

How to obtain ideal regeneration of periodontal tissue remains a challenge in the clinical treatment of periodontitis. Three-dimensional printing technology is based on computer-aided design, which produces materials with specific 3D shapes by layer-by-layer superposition, and has been applied to periodontal tissue regeneration therapy, this method offers hope to achieve ideal periodontal regeneration. This article reviews the application of 3D printing technology in the field of periodontal tissue regeneration. The literature review results show that 3D printing technology can design three-dimensional structures using computer software in advance and produce materials with specific three-dimensional structures. 3D printing technology mainly includes selective laser sintering, selective laser melting, extrusion forming printing and 3D bioprinting. At present, the support materials prepared by 3D printing technology include ceramic materials, polymer materials and metals. Submaterials have been extensively studied given their high adjustability, and 3D-printed personalized titanium mesh has been applied in the clinic. Multiphase materials prepared by 3D-printing technology can regenerate periodontal tissue in animal experiments, but the effect is not good in patients with periodontitis. In addition, 3D printing of composite scaffolds for periodontal tissue regeneration need to be further studied.

Key words: Periodontitis, 3D printing, Periodontal tissue regeneration, Scaffolds, Selective laser sintering, Selective laser melting

CLC Number: 

  • R781.4
[1] Slots J . Periodontitis: facts, fallacies and the future[J]. Periodontol 2000, 2017,75(1):7-23.
doi: 10.1111/prd.12221 pmid: 28758294
[2] 吴玉铭, 骆凯 . 牙骨质特异性蛋白研究进展[J]. 口腔疾病防治, 2018,26(4):263-267.
[3] Gomez-Florit M, Monjo M, Ramis JM . Quercitrin for periodontal regeneration: effects on human gingival fibroblasts and mesenchymal stem cells[J]. Sci Rep, 2015,5:16593.
doi: 10.1038/srep16593 pmid: 26558438
[4] Meimandi M, Ardakani MR, Nejad AE , et al. The effect of photodynamic therapy in the treatment of chronic periodontitis: a review of literature[J]. J Lasers Med Sci, 2017,8(3):S7-S11.
doi: 10.15171/jlms.2017.s2 pmid: 29263777
[5] Carmagnola D, Tarce M, Dellavia CA , et al. Engineered scaffolds and cell-based therapy for periodontal regeneration[J]. J Appl Biomater Funct Mater, 2017,15(4):e303-e312.
doi: 10.5301/jabfm.5000389 pmid: 29131300
[6] Larsson L, Decker AM, Nibali L , et al. Regenerative medicine for periodontal and peri-implant diseases[J]. J Dent Res, 2016,95(3):255-266.
doi: 10.1177/0022034515618887 pmid: 26608580
[7] 李乐 . 增材制造技术在口腔修复学中的应用进展[J]. 继续医学教育, 2016,30(2):117-120.
doi: 10.3969/j.issn.1004-6763.2016.073
[8] Chhaya MP, Poh PS, Balmayor ER , et al. Additive manufacturing in biomedical sciences and the need for definitions and norms[J]. Expert Rev Med Devices, 2015,12(5):537-543.
doi: 10.1586/17434440.2015.1059274 pmid: 26305837
[9] Carter S, Costa PF, Vaquette CA , et al. Additive biomanufacturing: an advanced approach for periodontal tissue regeneration[J]. Ann Biomed Eng, 2017,45(1):12-22.
doi: 10.1007/s10439-016-1687-2 pmid: 5215138
[10] Henkel J, Hutmacher DW . Design and fabrication of scaffold-based tissue engineering[J]. Bionanomat, 2013,14(3/4):171-193.
[11] 连芩, 李涤尘, 陈成 , 等. 面向组织工程化软组织的制造技术及增材制造[J]. 中国组织工程研究, 2014,18(8):1263-1269.
doi: 10.3969/j.issn.2095-4344.2014.08.019
[12] Mumith A, Thomas M, Shah Z , et al. Additive manufacturing current concepts, future trends[J]. Bone Joint J, 2018,100(4):455-460.
[13] Ballard DH, Trace AP, Ali S , et al. Clinical applications of 3D printing: primer for radiologists[J]. Acad Radiol, 2018,25(1):52-65.
doi: 10.1016/j.acra.2017.08.004
[14] Gokuldoss PK, Kolla S, Eckert J . Additive manufacturing processes: selective laser melting, electron beam melting and binder jetting selection guidelines[J]. Materials (Basel), 2017,10(6):672.
doi: 10.3390/ma10060672 pmid: 28773031
[15] 曾玉婷, 洪雅真, 王士斌 . 三维打印技术在骨组织工程领域的应用研究进展[J]. 国际生物医学工程杂志, 2016,39(3):191-195.
doi: 10.3760/cma.j.issn.1673-4181.2016.03.014
[16] Cardaropoli F, Alfieri V, Caiazzo F , et al. Manufacturing of porous biomaterials for dental implant applications through selective laser melting[J]. J Biomed Mater Res A, 2012 (3):1222-1229.
doi: 10.4028/www.scientific.net/AMR.535-537.1222
[17] Sumida T, Otawa N, Yu KM , et al. Custom-made titanium devices as membranes for bone augmentation in implant treatment: clinical application and the comparison with conventional titanium mesh[J]. J Craniomaxillofac Surg, 2015,43(10):2183-2188.
doi: 10.1016/j.jcms.2015.10.020 pmid: 26603108
[18] Kirchmajer DM, Gorkin IR, Panhuis M . An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing[J]. J Mater Chem B, 2015,3(20):4105-4117.
doi: 10.1039/C5TB00393H
[19] Murphy SV, Atala A . 3D bioprinting of tissues and organs[J]. Nat Biotechnol, 2014,32(8):773-785.
doi: 10.1038/nbt.2958 pmid: 25093879
[20] Hokmabad VR, Davaran S, Ramazani A , et al. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering[J]. J Biomater Sci Polym Ed, 2017,28(16):1797-1825.
doi: 10.1080/09205063.2017.1354674 pmid: 28707508
[21] Lee H, Yoo JJ, Kang HW , et al. Investigation of thermal degradation with extrusion-based dispensing modules for 3D bioprinting technology[J]. Biofabrication, 2016,8(1):015011.
doi: 10.1088/1758-5090/8/1/015011 pmid: 26844711
[22] Requicha JF, Viegas CA, Munoz F , et al. A tissue engineering approach for periodontal regeneration based on a biodegradable double-layer scaffold and adipose-derived stem cells[J]. Tissue Eng Part A, 2014,20(17/18):2483-2492.
doi: 10.1089/ten.TEA.2013.0360 pmid: 24575867
[23] He P, Zhao JN, Zhang JM , et al. Bioprinting of skin constructs for wound healing[J]. Burns Trauma, 2018,6(1):5.
doi: 10.1186/s41038-017-0104-x pmid: 5778803
[24] Hsieh FY, Lin HH, Hsu SH . 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair[J]. Biomaterials, 2015,71:48-57.
doi: 10.1016/j.biomaterials.2015.08.028 pmid: 26318816
[25] Athirasala A, Tahayeri A, Thrivikraman G , et al. A dentin-derived hydrogel bioink for 3D bioprinting of cell laden scaffolds for regenerative dentistry[J]. Biofabrication, 2018,10(2):024101.
doi: 10.1088/1758-5090/aa9b4e pmid: 29148982
[26] Ma Y, Xie L, Yang B , et al. Three-dimensional printing biotechnology for the regeneration of the tooth and tooth-supporting tissues[J]. Biotechnol Bioeng, 2019,116(2):452-468.
[27] 徐娟, 胡敏 . 人牙周膜干细胞与聚己内酯支架的三维生物打印初探[J]. 中华口腔医学杂志, 2017,52(4):238-242.
doi: 10.3760/cma.j.issn.1002-0098.2017.04.009
[28] Sun HH, Qu TJ, Zhang XH , et al. Designing biomaterials for in situ periodontal tissue regeneration[J]. Biotechnol Prog, 2012,28(1):3-20.
doi: 10.1002/btpr.698 pmid: 21913341
[29] Shue L, Yufeng Z, Mony U . Biomaterials for periodontal regeneration:a review of ceramics and polymers[J]. Biomatter, 2012,2(4):271-277.
doi: 10.4161/biom.22948
[30] Kaur G, Pandey OP, Singh K , et al. A review of bioactive glasses: their structure, properties, fabrication, and apatite formation[J]. J Biomed Mater Res A, 2014,102(1):254-274.
doi: 10.1002/jbm.a.34690 pmid: 23468256
[31] Asti A, Gioglio L . Natural and synthetic biodegradable polymers: different scaffolds for cell expansion and tissue formation[J]. Int J Artif Organs, 2014,37(3):187-205.
doi: 10.530/ijao.5000307 pmid: 24744164
[32] Ciocca L, Fantini M, De Crescenzio F , et al. Direct metal laser sintering (DMLS) of a customized titanium mesh for prosthetically guided bone regeneration of atrophic maxillary arches[J]. Med Biol Eng Comput, 2011,49(11):1347-1352.
doi: 10.1007/s11517-011-0813-4 pmid: 21779902
[33] Bosshardt DD, Stadlinger B, Terheyden H . Cell-to-cell communication - periodontal regeneration[J]. Clin Oral Implants Res, 2015,26(3):229-239.
doi: 10.1111/clr.12543 pmid: 25639287
[34] Ivanovski S, Vaquette C, Gronthos S , et al. Multiphasic scaffolds for periodontal tissue engineering[J]. J Dent Res, 2014,93(12, SI):1212-1221.
doi: 10.1177/0022034514544301 pmid: 4462800
[35] Park CH, Rios HF, Jin QM , et al. Biomimetic hybrid scaffolds for engineering human tooth-ligament interfaces[J]. Biomaterials, 2010,31(23):5945-5952.
doi: 10.1016/j.biomaterials.2010.04.027 pmid: 20471083
[36] Park CH, Rios HF, Jin QM , et al. Tissue engineering bone-ligament complexes using fiber-guiding scaffolds[J]. Biomaterials, 2012,33(1):137-145.
doi: 10.1016/j.biomaterials.2011.09.057 pmid: 3208770
[37] Lee CH, Cook JL, Mendelson A , et al. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study[J]. Lancet, 2010,376(9739):440-448.
doi: 10.1016/S0140-6736(10)60668-X pmid: 4035014
[38] Lee CH, Hajibandeh J, Suzuki T , et al. Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex[J]. Tissue Eng Part A, 2014,20(7/8):1342-1351.
doi: 10.1089/ten.TEA.2013.0386 pmid: 3993023
[39] Rasperini G, Pilipchuk SP, Flanagan CL , et al. 3D-printed bioresorbable scaffold for periodontal repair[J]. J Dent Res, 2015,94(9):153-157.
doi: 10.1177/0022034515588303
[40] Ding CZ, Li ZB . A review of drug release mechanisms from nanocarrier systems[J]. Mater Sci Eng C Mater Biol Appl, 2017,76:1440-1453.
doi: 10.1016/j.msec.2017.03.130 pmid: 28482511
[1] REN Lizhi,SUN Rui. New progress in the clinical application of GBR membrane materials [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(6): 404-408.
[2] WU Hongyu,MA Xiaoxin,LU Haixia,FENG Xiping,GU Qin,YE Wei,XIE Yingxin,XIE Danshu,WANG Wenji. Investigation of dental caries and periodontal conditions in maintenance hemodialysis patients [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(5): 313-317.
[3] ZHANG Wen,XIE Wenqiang,ZHENG Meihua,KONG Xiangbo. Clinical application of laser selective melting titanium alloy for removable partial denture frameworks [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(4): 231-235.
[4] ZHANG Limu,LIN Xiaoping. Research progress on the mechanism of C-reactive protein mediated periodontitis and systemic diseases [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(3): 184-188.
[5] LIU Huimin,LI Xiangwei. Research progress of scaffolds for promoting the vascularization of regenerated dental pulp [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(3): 200-204.
[6] LIU Xiaoyuan,ZHANG Kai,HAN Xiangzhen,ZUO Xinhui,LI Jun,HE Huiyu. Research status of 3D-printed composite PVA bone tissue engineering scaffolds [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(1): 52-55.
[7] OU Zhanpeng,ZHANG Hanqing,LI Qunxing,LIN Xinyu,FAN Song,LI Jinsong. Application of virtual surgical planning in the surgical treatment of osteoradionecrosis of mandible [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(9): 561-568.
[8] LI Jiatong,ZHOU Xuedong,XU Xin,WANG Yan. Research progress of probiotics in the prevention and treatment of oral infectious diseases [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(9): 598-601.
[9] Gang WANG,Peng SUN,Juan LI,Shiguang HUANG. Expression of the receptor of advanced glycation end products in gingival tissue endothelial cells from type 2 diabetic rats with chronic periodontitis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(7): 428-434.
[10] DAI Qian,YU Yuanling,HUANG Shiguang. Macrophage IL-33 expression in macrophages of human chronic periapical periodontitis and apical cyst [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(5): 300-303.
[11] LIU Ziyan,DAI Qun,XIAO Fang. Application of digital implant guide plate in oral implant restoration [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(5): 337-340.
[12] ZHU Yanxia,Gegen tana. Research progress of IL-33/ST2 signaling pathway in bone metabolism [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(3): 202-204.
[13] WANG Ye,LIN Xiaoping. Research progress on the common risk factors and related mechanisms of periodontitis and osteoporosis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(12): 794-798.
[14] WANG Min, GE Song. Research progress on the T cell receptor CDR3 spectral sequence of periodontitis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(12): 799-803.
[15] MA Yao,JIANG Zhaowei,JIN Yunyi,MIAO Qian,ZHANG Chunxiang,ZHANG Linkun. Gene ontology analysis of the TNF signaling pathway in early orthodontic tooth movement of rats with periodontitis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(11): 695-702.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hong-chang LAI,Jun-yu SHI. Maxillary sinus floor elevation[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(1): 8 -12 .
[2] Pin ZHOU, Yang-fei LI. MRI study of temporomandibular joint disc position in asymptomatic volunteers[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(4): 239 -244 .
[3] Xinxin XIA, Fang FANG, Lijuan CHENG. Shaping ability of Pathfile and WaveOne in simulated root canals[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(6): 365 -368 .
[4] Yuanhong LI, Xinyi FANG, Yu QIU, Lei CHENG. Experimental study on the effects of green tea on salivary flow rate and pH value[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(9): 560 -564 .
[5] Chengzhang LI. Masticatory muscles in occlusion[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(12): 755 -760 .
[6] . [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(1): 1 .
[7] Zhirong WU, Shiguang Huang. Research progress on the etiology, clinical examination and treatment of peri-implantitis[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(6): 401 -405 .
[8] Xiaowu YAO, Shisheng CHEN, Zizheng LU, Minxiao LIN. Clinical report and literature review on the amyloidosis of salivary glands[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(8): 533 -536 .
[9] Lan LIAO, Lijun ZENG. Updated research on digitalization in aesthetic restoration[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(7): 409 -414 .
[10] Yu LU, Chengxia LIU, Zhongjun LIU. Role of TRAF6 in inflammatory responses of human osteoblast-like cells with Enterococcusfaecalis[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(7): 420 -425 .
This work is licensed under a Creative Commons Attribution 3.0 License.