Journal of Prevention and Treatment for Stomatological Diseases ›› 2019, Vol. 27 ›› Issue (4): 255-259.doi: 10.12016/j.issn.2096-1456.2019.04.010

• Review Articles • Previous Articles     Next Articles

Research progress on the mechanism of radiocaries formation

WANG Zheng,CHENG Lei,ZHOU Xuedong,REN Biao()   

  1. State Key Laboratory of Oral Diseases& National Clinical Research Center for Oral Diseases&Department of Endodontics West China Stomatology Hospital of Sichuan University, Chengdu 610041, China
  • Received:2018-07-11 Revised:2018-11-25 Online:2019-04-20 Published:2019-04-28
  • Contact: Biao REN E-mail:renbiao@scu.edu.cn

Abstract:

Radioactive caries is the most common complication of head and neck cancer after radiotherapy. It is a rapidly progressing and widespread destructive disease of tooth tissue after radiotherapy. It is currently believed that salivary gland dysfunction and direct damage to teeth by radiation are the main pathogenic factors of radiation caries. In this paper, the pathogenesis of radiation caries, especially the effect of radiotherapy on oral caries-related microorganisms, are reviewed, and future research directions are proposed. Existing research has revealed that the structures of oral microorganisms change significantly after radiotherapy. The number and proportion of some dental caries-related microorganisms such as Streptococcus mutans, Lactobacillus lactis and Candida albicans increased, and their virulence increased. This indicated that the changes in oral microorganisms caused by radiotherapy played an important role in radioactive caries.

Key words: Radioactive caries, Pathogenic mechanism, Cariogenic microorganisms, Microecological imbalance, Streptococcus mutans, Lactobacillus, Candida albicans

CLC Number: 

  • R781.1
[1] Dobros K, Hajto-Bryk J, Wróblewska M , et al. Radiation-induced caries as the late effect of radiation therapy in the head and neck region[J]. Contemp Oncol, 2016,20(4):287-290.
[2] Aguiar GP, Jham BC, Cláudia S Magalhães , et al. A review of the biological and clinical aspects of radiation caries[J]. J Contemp Dent Pract, 2009,10(4):83-89.
[3] Deng J, Jackson L, Epstein JB , et al. Dental demineralization and caries in patients with head and neck cancer[J]. Oral Oncol, 2015,51(9):824-831.
doi: 10.1016/j.oraloncology.2015.06.009
[4] Galvãomoreira LV, Da CM . Dental demineralization, radiation caries and oral microbiota in patients with head and neck cancer[J]. Oral Oncol, 2015,51(12):89-90.
doi: 10.1016/j.oraloncology.2015.10.008
[5] Sood AJ, Fox NF, O′Connell BP , et al. Salivary gland transfer to prevent radiation-induced xerostomia: a systematic review and meta-analysis.[J]. Oral Oncol, 2014,50(2):77-83.
doi: 10.1016/j.oraloncology.2013.10.010
[6] Delli K, Spijkervet FKL, Kroese FGM , et al. Xerostomia[J]. Nippon Rinsho, 2014,24(7):1614-1618.
[7] De FF, Tombolini M, Musella A , et al. Radiation therapy and serum salivary amylase in head and neck cancer[J]. Oncotarget, 2017,8(52):90496.
[8] Konings AW, Coppes RP, Vissink A . On the mechanism of salivary gland radiosensitivity[J]. Int J Radiat Oncol Biol Phys, 2005,62(4):1187-1194.
doi: 10.1016/j.ijrobp.2004.12.051
[9] Liu X, Gong B, Souza LBD , et al. Radiation inhibits salivary gland function by promoting STIM1 cleavage by caspase-3 and loss of SOCE through a TRPM2-dependent pathway[J]. Sci Signal, 2017,10(482). doi: 10.1126/scisignal.aal4064.
[10] Sciubba JJ, Goldenberg D . Oral complications of radiotherapy[J]. Lancet Oncol, 2006,7(2):175-183.
doi: 10.1016/S1470-2045(06)70580-0
[11] Raychaudhuri A, Shah K, Porter RJ . The oral management of patients who have received radiotherapy to the head and neck region[J]. Br Dent J, 2013,214(8):387-393.
doi: 10.1038/sj.bdj.2013.380
[12] Reed R, Xu C, Liu Y , et al. Radiotherapy effect on nano-mechanical properties and chemical composition of enamel and dentine[J]. Arch. Oral Biol , 2015,60(5):690-697.
doi: 10.1016/j.archoralbio.2015.02.020
[13] Lieshout HFJ, Bots CP . The effect of radiotherapy on dental hard tissue—a systematic review[J]. Clin Oral Investig, 2014,18(1):17-24.
doi: 10.1007/s00784-013-1034-z
[14] Naves LZ, Novais VR, Armstrong SR , et al. Effect of gamma radiation on bonding to human enamel and dentin[J]. Support Care Cancer 2012; 20(11):2873-2878.
doi: 10.1007/s00520-012-1414-y
[15] Liang X, Zhang JY, Cheng IK , et al. Effect of high energy X-ray irradiation on the nano-mechanical properties of human enamel and dentine[J]. Braz Oral Res, 2016,30(1). doi: 10.1590/1807-3107BOR-2016.vol30.0009.
[16] McGuire JD, Gorski JP, Dusevich V , et al. Type IV collagen is a novel DEJ biomarker that is reduced by radiotherapy. J Dent Res, 2014,93(10):1028-1034.
doi: 10.1177/0022034514548221
[17] Seyedmahmoud R, Wang Y, Thiagarajan G , et al. Oral cancer radiotherapy affects enamel microhardness and associated indentation pattern morphology[J]. Clin Oral Investig, 2017(3):1-9.
[18] Soares CJ, Castro CG, Neiva NA , et al. Effect of gamma irradiation on ultimate tensile strength of enamel and dentin. J Dent Res, 2010,89(2):159-164.
doi: 10.1177/0022034509351251
[19] Nguyen HM, Reyland ME, Barlow LA . Mechanisms of taste bud cell loss after head and neck irradiation[J]. J Neurosci , 2012,32(10):3474-84.
doi: 10.1523/JNEUROSCI.4167-11.2012
[20] Negi P, Kingsley PA, Thomas M , et al. Pattern of gustatory impairment and its recovery after head and neck irradiation[J]. Iran J Otorhinolaryngol, 2017,29(95):319-327.
[21] Tsutsumi R, Goda M, Fujimoto C , et al. Effects of chemotherapy on gene expression of lingual taste receptors in patients with head and neck cancer[J]. Laryngoscope, 2016,126(3):e103-e109.
doi: 10.1002/lary.v126.3
[22] Zaura E, Nicu EA, Krom BP , et al. Acquiring and maintaining a normal oral microbiome: current perspective[J]. Front Cell Infect Microbiol, 2014,4(4):85.
[23] Abusleme L, Dupuy AK, Dutzan N , et al. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation[J]. ISME J , 2013,7(5):1016-1025.
doi: 10.1038/ismej.2012.174
[24] Kielbassa AM, Hinkelbein W, Hellwig E , et al. Radiation-related damage to dentition[J]. Lancet Oncol, 2006,7(4):326-335.
doi: 10.1016/S1470-2045(06)70658-1
[25] Brown LR, Dreizen S, Handler S , et al. Effect of radiation-induced xerostomia on human oral microflora[J]. J Dent Res, 1975,54:740-750.
doi: 10.1177/00220345750540040801
[26] Eliasson L, Carlen A, Almstahl A , et al. Dental plaque pH and micro-organisms during hyposalivation[J]. J Dent Res, 2006,85(4):334-338.
doi: 10.1177/154405910608500410
[27] He J, Li Y, Cao Y , et al. The oral microbiome diversity and its relation to human diseases[J]. Folia Microbiol , 2015,60(1):69-80.
doi: 10.1007/s12223-014-0342-2
[28] Hu YJ, Shao ZY, Wang Q , et al. Exploring the dynamic core microbiome of plaque microbiota during head-and-neck radiotherapy using pyrosequencing[J]. PLoS one, 2013,8(2):e56343.
doi: 10.1371/journal.pone.0056343
[29] Gao L, Hu Y, Wang Y , et al. Exploring the variation of oral microbiota in supragingival plaque during and after head-and-neck radiotherapy using pyrosequencing[J]. Arch Oral Biol, 2015,60(9):1222-1230.
doi: 10.1016/j.archoralbio.2015.05.006
[30] Krzysciak W, Jurczak A, Kocielniak D , et al. The virulence of Streptococcus mutans, and the ability to form biofilms[J]. Eur J Clin Microbiol Infect Dis, 2014,33(4):499-515.
doi: 10.1007/s10096-013-1993-7
[31] Metwalli KH, Khan SA, Krom BP , et al. Streptococcus mutans, Candida albicans, and the human mouth: a sticky situation[J]. PLoS Pathog, 2013,9(10):e1003616.
doi: 10.1371/journal.ppat.1003616
[32] Keene HJ, Fleming TJ, Toth BB . Cariogenic microflora in patients with Hodgkin′s disease before and after mantle field radiotherapy[J]. Oral Surg Oral Med Oral Pathol, 1994,78(5):577-582.
doi: 10.1016/0030-4220(94)90167-8
[33] Meng L, Liu J, Peng B , et al. The persistence of Streptococcus mutans in nasopharyngeal carcinoma patients after radiotherapy[J]. Caries Res, 2005,39(6):484-489.
doi: 10.1159/000088184
[34] Santosh ABR, Ogle OE, Williams D , et al. Epidemiology of oral and maxillofacial infections[J]. Dent Clin North Am, 2017,61(2):217-233.
doi: 10.1016/j.cden.2016.11.003
[35] Epstein JB, Chin EA, Jacobson JJ , et al. The relationships among fluoride, cariogenic oral flora, and salivary flow rate during radiation therapy[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1998,86(3):286-292.
doi: 10.1016/S1079-2104(98)90173-1
[36] Agarwal P, Upadhyay R, Agarwal A . Radiotherapy complications and their possible management in the head and neck region[J]. Indian J Dent Res, 2012,23(6):843.
[37] Joyston-Bechal S, Hayes K, Davenport ES , et al. Caries incidence, Mutans Streptococci and Lactobacilli in irradiated patients during a 12-months preventive programme using chlohrexidine and fluoride[J]. Caries Res, 1992,26:384-390.
doi: 10.1159/000261473
[38] Shrestha M, Boaz K, Srikant N , et al. An assessment of candidal colonization and species differentiation in head and neck cancer patients receiving radiation[J]. J Nepal Health Res Counc, 2014,12(28):156-161.
[39] Raja M, Hannan A, Ali K . Association of oral Candidal carriage with dental caries in children[J]. Caries Res, 2010,44(3):272-276.
[40] Yang XQ, Zhang Q, Lu LY , et al. Genotypic distribution of Candida albicans in dental biofilm of Chinese children associated with severe early childhood caries[J]. Arch. Oral Biol, 2012,57(8):1048-1053.
doi: 10.1016/j.archoralbio.2012.05.012
[41] Koo H, Bowen WH . Candida albicans and Streptococcus mutans: a potential synergistic alliance to cause virulent tooth decay in children[J]. Future Microbiol, 2014,9(12):1295-1297.
doi: 10.2217/fmb.14.92
[42] Srithavaj T, Thaweboon S . Determination of oral microflora in irradiated ocular deformed children[J]. Southeast Asian J Trop Med Public Health, 2006,37(5):991-995.
[43] Almståhl A, Wikström M, Fagerberg-Mohlin B . Microflora in oral ecosystems in subjects with radiation-induced hyposalivation[J]. Oral Dis, 2008,14(6):541-549.
doi: 10.1111/odi.2008.14.issue-6
[44] Belazi M, Velegraki A, Koussidoueremondi T , et al. Oral Candida isolates in patients undergoing radiotherapy for head and neck cancer: prevalence, azole susceptibility profiles and response to antifungal treatment[J]. Oral Microbiol Immunol, 2004,19(6):347-351.
doi: 10.1111/omi.2004.19.issue-6
[45] Ueta E, Tanida T, Yoneda K , et al. Increase of Candida cell virulence by anticancer drugs and irradiation[J]. Oral Microbiol Immunol, 2001,16(4):243-249.
doi: 10.1034/j.1399-302X.2001.160408.x
[1] HE Yuanli,REN Biao,CHEN Xuan,ZOU Ling. Mechanism research of srtA gene on the oxidation tolerance of Streptococcus mutans [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(5): 292-297.
[2] PENG Xinyu,PENG Xian,CHENG Lei. Research progress on the effect of pH-sensitive drug delivery systems on oral microorganisms [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(3): 189-194.
[3] LI Yingxue, WANG Yufei, ZHANG Linglin. Research progress on the pathogenesis and treatment of Enterococcus faecalis in pulp periapical disease [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(8): 535-540.
[4] YANG Ting,ZHANG Wanting,LI Beibei,DONG Ying,CAO Hongfei,ZHAO Jin. Distribution of oral Streptococcus mutans and its correlation with dental caries in children of Bortala Mongolian Autonomous Prefecture [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(4): 219-225.
[5] WU Zhengxi,LI Fenglan. Effect of two aging methods on the bonding interface between glass ceramics and dentin [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(11): 703-710.
[6] Yi TAN,Sui MAI,Jia LIU,Lisha GU. Antibacterial activity of the nisin-containing single-bond universal adhesive [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(9): 557-563.
[7] Ru ZHANG, Lei LEI, Yingming YANG, Tao HU. Regulation mechanism of rnc gene on Streptococcus mutans environmental tolerance and its mechanism [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(8): 504-507.
[8] Hai-xia LIU,Xuan CHEN,Ling ZOU. An in vitro evaluation of antibacterial properties of 2 pulp capping materials [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(10): 578-581.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(2): 125 -128 .
[2] Hong-chang LAI,Jun-yu SHI. Maxillary sinus floor elevation[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(1): 8 -12 .
[3] Pin ZHOU, Yang-fei LI. MRI study of temporomandibular joint disc position in asymptomatic volunteers[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(4): 239 -244 .
[4] Xinxin XIA, Fang FANG, Lijuan CHENG. Shaping ability of Pathfile and WaveOne in simulated root canals[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(6): 365 -368 .
[5] Yuanhong LI, Xinyi FANG, Yu QIU, Lei CHENG. Experimental study on the effects of green tea on salivary flow rate and pH value[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(9): 560 -564 .
[6] Chengzhang LI. Masticatory muscles in occlusion[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(12): 755 -760 .
[7] . [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(1): 1 .
[8] Zhirong WU, Shiguang Huang. Research progress on the etiology, clinical examination and treatment of peri-implantitis[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(6): 401 -405 .
[9] Xiaowu YAO, Shisheng CHEN, Zizheng LU, Minxiao LIN. Clinical report and literature review on the amyloidosis of salivary glands[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(8): 533 -536 .
[10] Lan LIAO, Lijun ZENG. Updated research on digitalization in aesthetic restoration[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(7): 409 -414 .
This work is licensed under a Creative Commons Attribution 3.0 License.