[1] |
Asri R, Harun W, Samykano M , et al. Corrosion and surface modification on biocompatible metals: a review[J]. Mater Sci Eng C Mater Biol Appl, 2017,77:1261-1274.
DOI
URL
|
[2] |
Ayobianmarkazi N, Karimi M, Safarhajhosseini A . Effects of Er: YAG laser irradiation on wettability, surface roughness, and biocompatibility of SLA titanium surfaces: an in vitro study[J]. Lasers Med Sci, 2015,30(2):1-6.
DOI
URL
|
[3] |
Park KS, Al Awamleh AG, Cho SA . Comparison of removal torques between laser-etched and modified sandblasted acid-etched Ti implant surfaces in rabbit tibias[J]. J Adv Prosthodont, 2018,10(1):73-78.
DOI
URL
|
[4] |
Guo ZH, Zhou L, Rong MD , et al. Bone response to a pure titanium implant surface modified by laser etching and microarc oxidation[J]. Int J Oral Maxillofac Implants, 2010,25(1):130-136.
|
[5] |
Zwahr C, Guenther D, Brinkmann T , et al. Laser surface pattering of titanium for improving the biological performance of dental implants[J]. Adv Healthc Mater, 2017,6(3):1600858.
DOI
URL
|
[6] |
Naganawa T, Ishihara Y, Iwata T , et al. In vitro biocompatibility of a new titanium-29niobium-13tantalum-4.6zirconium alloy with osteoblast-like MG63 cells[J]. J Periodontol, 2004,75(12):1701-1707.
DOI
URL
|
[7] |
Wang M, Ning Y, Zou H , et al. Effect of Nd: YAG laser-nitriding-treated titanium nitride surface over Ti6Al4V substrate on the activity of MC3T3-E1 cells[J]. Biomed Mater Eng, 2014,24(1):643-649.
|
[8] |
Hartjen P, Nada O, Silva TG , et al. Cytocompatibility of direct laser interference-patterned titanium surfaces for implants[J]. In Vivo (Brooklyn), 2017,31(5):849-854.
|
[9] |
Tavakoli J, Khosroshahi ME . Surface morphology characterization of laser-induced titanium implants: lesson to enhance osseointegration process[J]. Biomed Eng Lett, 2018,8(3):249-257.
DOI
|
[10] |
Peng W, Xu LW, You J , et al. Selective laser melting of titanium alloy enables osseointegration of porous multi-rooted implants in a rabbit model[J]. Biomed Eng Online, 2016,15(1):85.
DOI
URL
|
[11] |
Gotz HE, Muller M, Emmel A , et al. Effect of surface finish on the osseointegration of laser-treated titanium alloy implants[J]. Biomaterials, 2004,25(18):4057-4064.
DOI
URL
|
[12] |
丁祥龙, 王敬旭, 郭泽鸿 , 等. RGD肽段修饰TiO2 纳米管对MG63成骨细胞黏附增殖能力的影响[J]. 口腔疾病防治, 2018,26(11):32-37.
|
[13] |
Cei S, Karapetsa D, Aleo E , et al. Protein adsorption on a laser-modified titanium implant surface[J]. Implant Dent, 2015,24(2):134-141.
|
[14] |
Phani MK, Kumar A, Arnold W , et al. Elastic stiffness and damping measurements in titanium alloys using atomic force acoustic microscopy[J]. J Alloys Compd, 2016,676:397-406.
DOI
URL
|
[15] |
Györgyey Á, Ungvári K, Kecskeméti G , et al. Attachment and proliferation of human osteoblast-like cells(MG-63)on laser-ablated titanium implant material[J]. Mater Sci Eng C, 2013,33(7):4251-4259.
DOI
URL
|
[16] |
Trisi P, Berardini M, Colagiovanni M , et al. Laser-treated titanium implants: an in vivo histomorphometric and biomechanical analysis[J]. Implant Dent, 2016,25(5):575-580.
DOI
URL
|
[17] |
Shah FA, Johansson ML, Omar O , et al. Laser-modified surface enhances osseointegration and biomechanical anchorage of commercially pure titanium implants for bone-anchored hearing systems[J]. PLoS One, 2016,11(6):e0157504.
DOI
URL
|
[18] |
Arifagaoglu O, Oncul S, Ercan A , et al. HGF-1 proliferation on titanium dental implants treated with laser melting technology[J]. Niger J Clin Pract, 2019,22(2):251-257.
|
[19] |
Lepore S, Milillo L, Trotta T , et al. Adhesion and growth of osteoblast-like cells on laser-engineered porous titanium surface: expression and localization of n-cadherin and beta-catenin[J]. J Biol Regul Homeost Agents, 2013,27(2):531-541.
|
[20] |
Perez-Diaz L, Dedavid BA, Gehrke S . Evaluation of fibroblasts cells viability and adhesion on six different titanium surfaces: an in vitro experimental study[J]. Recent Pat Biotechnol, 2018,12(2):145-153.
DOI
URL
|