Journal of Prevention and Treatment for Stomatological Diseases ›› 2019, Vol. 27 ›› Issue (10): 667-672.doi: 10.12016/j.issn.2096-1456.2019.10.011

• Review Articles • Previous Articles     Next Articles

The role of myofibroblasts in orthodontic tooth movement

PAN Xumeng,LIU Yi()   

  1. Fengtian Dental Clinic,Stomatological Hospital,China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Liaoning province oral disease transformation medical research center, Shenyang 110013, China
  • Received:2018-07-07 Revised:2019-04-10 Online:2019-10-20 Published:2019-10-20
  • Contact: Yi LIU E-mail:liuyi256@126.com

Abstract:

Myofibroblasts are fibroblasts with contractile function. As a contractile cell, myofibroblasts can regulate the function of normal organs in normal tissues. After tissue injury, myofibroblasts play an important role in mediating injury repair, but at the same time, myofibroblasts can also play an abnormal role in the formation of exocytic matrix during tissue fibrosis. This article reviews the relevant literature and discusses the role of myofibroblasts in orthodontic tooth movement. The literature review shows that mechanical stress and chemical stimulation can significantly promote the differentiation of precursor cells into myofibroblasts. TGF-β, Rho and Hippo signal transduction pathways play an important regulatory role in the differentiation process. Orthodontic tooth movement is a complex process of periodontal tissue remodeling, in which the periodontal ligament and gingiva are important periodontal soft tissues. In vivo studies have shown a large number of differentiated myofibroblasts in the tension-side periodontal ligament. Myofibroblasts participate in the remodeling of the periodontal ligament during orthodontic tooth movement and thus are closely related to orthodontic tooth movement.

Key words: orthodontic tooth movement, periodontium, myofibroblast, differentiation, TGF-β signaling pathway;, Rho signaling pathway, Hippo signaling pathway

CLC Number: 

  • R783.5
[1] 于天水, 凌跃, 官大威 . 肌成纤维细胞的研究进展及其法医学应用[J]. 法医学杂志, 2013,29(2):140-143.
[2] Sandbo N, Smolyaninova LV, Orlov SN , et al. Control of myofibroblast differentiation and function by cytoskeletal signaling[J]. Biochemistry (Mosc), 2016,81(13):1698-1708.
[3] 贾双双, 李伟阳, 刘欣 , 等. 转化生长因子-β1通过产生活性氧诱导骨髓间充质干细胞分化为肌成纤维细胞[J]. 北京大学学报(医学版), 2015,47(5):737-742.
doi: 10.3969/j.issn.1671167X.2015.05.002
[4] Kim W, Barron DA, Martin RS , et al. RUNX1 is essential for mesenchymal stem cell proliferation and myofibroblast differentiation[J]. Proc Natl Acad Sci U S A, 2014,111(46):16389-16394.
[5] Kramann R, Schneider RK . The identification of fibrosis-driving myofibroblast precursors reveals new therapeutic avenues in myelofibrosis[J]. Blood, 2018,131(19):2111-2119.
[6] Hinz B, Phan SH, Thannickal VJ , et al. The myofibroblast: one function, multiple origins[J]. Am J Pathol, 2007,170(6):1807-1816.
[7] Pakshir P, Hinz B . The big five in fibrosis: macrophages, myofibroblasts, matrix, mechanics, and miscommunication[J]. Matrix Biology , 2018,68(69):81-93.
[8] Toh BH, Yildiz A, Sotelo J , et al. Distribution of actin and myosin in muscle and non-muscle cells[J]. Cell Tissue Res, 1979,199(1):117-126.
[9] 刘广龙, 刘忠龙, 张志愿 , 等. 外源性TGF-β1诱导大鼠骨髓间充质干细胞向肌成纤维细胞分化的实验研究[J]. 口腔医学, 2014,34(1):1-4.
[10] 孟耀, 刘曼, 白丁 . 牙周膜肌成纤维细胞的体外培养及其标志物的表达时效[J]. 国际口腔医学杂志, 2015,42(3):285-289.
doi: 10.7518/gjkq.2015.03.010
[11] 孟耀, 刘曼, 白丁 . 牙周膜肌成纤维细胞功能特点的体外研究[J]. 华西口腔医学杂志, 2015,33(2):130-134.
doi: 10.7518/hxkq.2015.02.005
[12] Xu H, Bai D, Ruest LB , et al. Expression analysis of α-smooth muscle actin and tenascin-C in the periodontal ligament under orthodontic loading or in vitro culture[J]. Int J Oral Sci, 2015,7(4):232-241.
[13] Fang YY, Svoboda KK . Nicotine inhibits myofibroblast differentiation in human gingival fibroblasts[J]. J Cell Biochem, 2005,95(6):1108-1119.
[14] Meng XM, Nikolic-Paterson DJ, Lan HY . TGF-β: the master regulator of fibrosis[J]. Nat Rev Nephrol, 2016,12(6):325-338.
[15] Fang S, Xu C, Zhang YT , et al. Umbilical cord-derived mesenchymal stem cell-derived exosomal microRNAs suppress myofibroblast differentiation by inhibiting the transforming growth factor-beta/SMAD2 pathway during wound healing[J]. Stem Cells Transl Med, 2016,5(10):1425-1439.
[16] Wang C, Gu S, Cao H , et al. miR-877-3p targets Smad7 and is associated with myofibroblast differentiation and bleomycin-induced lung fibrosis[J]. Sci Rep, 2016,6:30122.
[17] Vardouli L, Moustakas A, Stournaras C . LIM-kinase 2 and cofilin phosphorylation mediate actin cytoskeleton reorganization induced by transforming growth factor-beta[J]. J Biol Chem, 2005,280(12):11448-11457.
[18] Bernau K, Torr EE, Evans MD , et al. Tensin 1 is essential for myofibroblast differentiation and extracellular matrix formation[J]. Am J Respir Cell Mol Biol, 2017,56(4):465-476.
[19] Blyszczuk P, Mueller-Edenborn B, Valenta TA , et al. Transforming growth factor-beta-dependent Wnt secretion controls myofibroblast formation and myocardial fibrosis progression in experimental autoimmune myocarditis[J]. Eur Heart J, 2017,38(18):1413-1425.
[20] Walraven M, Akershoek JJ, Beelen R , et al. In vitro cultured fetal fibroblasts have myofibroblast-associated characteristics and produce a fibrotic-like environment upon stimulation with TGF-beta 1: Is there a thin line between fetal scarless healing and fibrosis?[J]. Arch Dermatol Res, 2017,309(2):111-121.
[21] Manokawinchoke J, Limjeerajarus N, Limjeerajarus C , et al. Mechanical force-induced TGFB1 increases expression of SOST/POSTN by hPDL cells[J]. J Dent Res, 2015,94(7):983-989.
[22] Singh V, Davidson AC, Hume PJ , et al. Arf GTPase interplay with Rho GTPases in regulation of the actin cytoskeleton[J]. Small GTPases, 2017: 1-8.
[23] Van Buul JD . Geerts D,huveneers S. Rho GAPs and GEFs: controling switches in endothelial cell adhesion[J]. Cell Adh Migr, 2014,8(2):108-124.
[24] Pan J, Wang T, Wang L , et al. Cyclic strain-induced cytoskeletal rearrangement of human periodontal ligament cells via the Rho signaling pathway[J]. PLoS One, 2014,9(3):e91580.
[25] Bendris N, Lemmers B, Blanchard JM . Cell cycle, cytoskeleton dynamics and beyond: the many functions of cyclins and CDK inhibitors[J]. Cell Cycle, 2015,14(12):1786-1796.
[26] Li CJ, Zhen GH, Chai Y , et al. RhoA determines lineage fate of mesenchymal stem cells by modulating CTGF-VEGF complex in extracellular matrix[J]. Nat Commun, 2016,7:11455.
[27] Zhao XH, Laschinger C, Arora P , et al. Force activates smooth muscle alpha-actin promoter activity through the Rho signaling pathway[J]. J Cell Sci, 2007,120(10):1801-1809.
[28] Miralles F, Posern G, Zaromytidou AI , et al. Actin dynamics control SRF activity by regulation of its coactivator MAL[J]. Cell, 2003,113(3):329-342.
[29] Meng R, Song M, Pan J . Rho is involved in periodontal tissue remodelling with experimental tooth movement in rats[J]. Arch Oral Biol, 2015,60(6):923-931.
[30] Barcia JM, Portoles S, Portoles L , et al. Does oxidative stress induced by alcohol consumption affect orthodontic treatment outcome?[J]. Front Physiol, 2017,8(22):1-11.
[31] Yamamoto T, Ugawa Y, Kawamura M , et al. Modulation of microenvironment for controlling the fate of periodontal ligament cells: the role of Rho/ROCK signaling and cytoskeletal dynamics[J]. J Cell Commun Signal, 2018,12(1):369-378.
[32] Strzelecka-Kiliszek A, Mebarek S, Roszkowska M , et al. Functions of Rho family of small GTPases and Rho-associated coiled-coil kinases in bone cells during differentiation and mineralization[J]. Biochim Biophys Acta, 2017,1861(5):1009-1023.
[33] 吉新彦, 钟国轩, 赵斌 . 哺乳动物Hippo信号通路分子机制研究进展[J]. 遗传, 2017,39(07):546-567.
[34] Yu FX, Zhao B, Guan KL . Hippo pathway in organ size control, tissue homeostasis, and cancer[J]. Cell, 2015,163(4):811-828.
[35] Hayashi S, Yokoyama H, Tamura K . Roles of hippo signaling pathway in size control of organ regeneration[J]. Dev Growth Differ, 2015,57(4):341-351.
[36] Rybarczyk A, Wierzbicki P, Kowalczyk AA . Role of the hippo pathway in cell proliferation and organ size control. disorders of the pathway in cancer diseases[J]. Postepy Hig Med Dosw, 2014,68(5):503-515.
[37] Justice RW, Zilian O, Woods DF , et al. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation[J]. Genes Dev, 1995,9(5):534-546.
[38] Piersma B, de Rond S, Werker PM , et al. YAP1 is a driver of myofibroblast differentiation in normal and diseased fibroblasts[J]. Am J Pathol, 2015,185(12):3326-3337.
[39] Mcneill H, Reginensi A . Lats1/2 regulate yap/Taz to control nephron progenitor epithelialization and inhibit myofibroblast formation[J]. J Am Soc Nephrol, 2017,28(3):852-861.
[40] Huelter-Hassler D, Tomakidi P, Steinberg TA . Orthodontic strain affects the Hippo-pathway effector YAP concomitant with proliferation in human periodontal ligament fibroblasts[J]. Eur J Orthod, 2017,39(3):251-257.
[41] Liao ZP, Chen JN, Li W , et al. Biomechanical investigation into the role of the periodontal ligament in optimising orthodontic force: a finite element case study[J]. Arch Oral Biol, 2016,66(2):98-107.
[42] Dutra EH, Nanda R, Yadav S . Bone response of loaded periodontal ligament[J]. Curr Osteoporos Rep, 2016,14(6):280-283.
[43] 孟耀, 白丁, 韩向龙 , 等. 犬正畸牙移动过程中张力侧牙周膜肌成纤维细胞的表达研究[J]. 四川大学学报(医学版), 2007,38(1):123-125.
[44] Meng Y, Han X, Huang L , et al. Orthodontic mechanical tension effects on the myofibroblast expression of alpha-smooth muscle actin[J]. Angle Orthod, 2010,80(5):912-918.
[45] 项自超, 何依若, 王鸿哲 , 等. 正畸牙移动中的潜在新角色:牙周膜肌成纤维细胞[J]. 生命科学研究, 2016,20(04):371-376.
[46] Xu H, Han X, Meng Y , et al. Favorable effect of myofibroblasts on collagen synjournal and osteocalcin production in the periodontal ligament[J]. Am J Orthod Dentofacial Orthop, 2014,145(4):469-479.
[47] Xu H, He Y, Feng JQ , et al. Wnt3α and transforming growth factor-β induce myofibroblast differentiation from periodontal ligament cells via different pathways[J]. Exp Cell Res, 2017,353(2):55-62.
[48] Kimura H, Okubo N, Chosa N , et al. EGF positively regulates the proliferation and migration, and negatively regulates the myofibroblast differentiation of periodontal ligament-derived endothelial progenitor cells through MEK/ERK- and JNK-dependent signals[J]. Cell Physiol Biochem, 2013,32(4):899-914.
doi: 10.1159/000354493
[49] Kukolj T, Trivanovic D, Djordjevic IO , et al. Lipopolysaccharide can modify differentiation and immunomodulatory potential of periodontal ligament stem cells via ERK1,2 signaling[J]. J Cell Physiol, 2018,233(1):447-462.
[50] Dorotheou D, Bochaton-Piallat ML, Giannopoulou C , et al. Expression of -smooth muscle actin in the periodontal ligament during post-emergent tooth eruption[J]. J Int Med Res, 2018,46(6):2423-2435.
[51] Tommiska J, Känsäkoski J, Skibsbye L , et al. Two missense mutations in KCNQ1 cause pituitary hormone deficiency and maternally inherited gingival fibromatosis[J]. Nat Commun, 2017,8(1):1289-1299.
[1] WANG Zhiheng,ZUO Jie,WANG Mengqi,ZHU Shaojun,LIU Yishan. miR-214 inhibits the osteogenic differentiation of dental follicle cells in vitro [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(3): 146-152.
[2] LIAN Keqian,ZHANG Xin,ZHOU Jieyu,LIAO Yanfen,SI Shanshan. Biocompatibility of bone marrow mesenchymal cells on polyetheretherketone and titanium surfaces in vitro [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(2): 73-78.
[3] LIAO Chunhui,LI Mingfei,YE Jinmei,PENG Wei,CHEN Songling. The regulatory mechanisms of IGF1 in the osteogenic differentiation of canine MSMSCs via BMP2-Smad1/5 signaling pathway [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(1): 16-23.
[4] ZHOU Jiaqi,SHU Linjing,XIONG Yi,ZHANG Yixin,XIANG Lin,WU Yingying. Study on the role of FoxO1 in the regulation of osteoblastic metabolism by 1,25(OH)2D3 in a high glucose environment [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(1): 24-29.
[5] REN Qingyuan,HE Wulin,WANG Qing,CHU Hongxing,LIN Haiyan. Effect of endoplasmic reticulum stress on the osteogenic differentiation of periodontal ligament cells under continuous static pressure [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(8): 485-489.
[6] HU Huiting,YU Fenglin,ZHAO Yueping. Research progress on the factors influencing the biological characteristics of dental pulp stem cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(4): 268-272.
[7] YANG Pingzhu,WEN Xiujie,NIE Xin,ZHAO Qian,WANG Yingying,ZENG Qiuyun,ZHU Lin,Li Jun. Finite element analysis of torque control efficiency of a homemade four-curved auxiliary arch for anterior teeth [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(3): 178-184.
[8] MA Yao,JIANG Zhaowei,JIN Yunyi,MIAO Qian,ZHANG Chunxiang,ZHANG Linkun. Gene ontology analysis of the TNF signaling pathway in early orthodontic tooth movement of rats with periodontitis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(11): 695-702.
[9] YIN Xiaoping,XIONG Huacui,CHEN Ke,HUANG Ying,XU Shuaimei. The effects of leptin on osteogenesis/odontogenic related gene expression of human apical papillary stem cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(1): 23-29.
[10] Qiaoli NIU, Yiming LI, Yanyan SONG, Chenxi LI, Jin ZHAO. Effects of different concentrations of MTA on the proliferation and differentiation of stem cells from the apical papilla [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(8): 491-495.
[11] Jing ZHANG, Shuangxi ZHU, Qiong RONG, Wei PENG, Xiang LI, Songling CHEN. Role of miR-27a in the osteogenic differentiation of beagle maxillary sinus membrane stem cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(8): 484-490.
[12] Xuening GU, Jiamiao QUAN, Yuqing GUO, Song LI. cAMP-responsive-element-binding protein promotes the differentiation of human stem cells from the apical papilla via inhibition of the TGF-β1 pathway [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(7): 428-433.
[13] Xiumei ZHENG, Wenxia HUANG. Effects of inflammatory microenvironment mediated by macrophage on the proliferation and osteogenic differentiation of periodontal ligament cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(5): 297-303.
[14] Jing LI, Liang CHENG, Lühua GUO, Tong LI, Moyang YANG, Junmei WANG, Zhe WU. Effect and molecular mechanism of isorhamnetin extracted from Ginkgo biloba on the differentiation of RAW264.7 cells into osteoclasts [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(3): 158-165.
[15] HU Yuanyuan,ZONG Juanjuan. Research progress on the gingival papilla reconstruction [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(12): 804-809.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hong-chang LAI,Jun-yu SHI. Maxillary sinus floor elevation[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(1): 8 -12 .
[2] Pin ZHOU, Yang-fei LI. MRI study of temporomandibular joint disc position in asymptomatic volunteers[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(4): 239 -244 .
[3] Xinxin XIA, Fang FANG, Lijuan CHENG. Shaping ability of Pathfile and WaveOne in simulated root canals[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(6): 365 -368 .
[4] Yuanhong LI, Xinyi FANG, Yu QIU, Lei CHENG. Experimental study on the effects of green tea on salivary flow rate and pH value[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(9): 560 -564 .
[5] Chengzhang LI. Masticatory muscles in occlusion[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(12): 755 -760 .
[6] . [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(1): 1 .
[7] Zhirong WU, Shiguang Huang. Research progress on the etiology, clinical examination and treatment of peri-implantitis[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(6): 401 -405 .
[8] Xiaowu YAO, Shisheng CHEN, Zizheng LU, Minxiao LIN. Clinical report and literature review on the amyloidosis of salivary glands[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(8): 533 -536 .
[9] Lan LIAO, Lijun ZENG. Updated research on digitalization in aesthetic restoration[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(7): 409 -414 .
[10] Yu LU, Chengxia LIU, Zhongjun LIU. Role of TRAF6 in inflammatory responses of human osteoblast-like cells with Enterococcusfaecalis[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(7): 420 -425 .
This work is licensed under a Creative Commons Attribution 3.0 License.