[1] |
Arciola CR, Campoccia D, Montanaro L . Implant infections: adhesion, biofilm formation and immune evasion[J]. Nat Rev Microbiol, 2018,16(7):397-409.
|
[2] |
Rasouli R, Barhoum A, Uludag H . A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance[J]. Biomater Sci, 2018,6(6):1312-1338.
|
[3] |
Hickok NJ, Shapiro IM, Chen AF . The impact of incorporating antimicrobials into implant surfaces[J]. J Dent Res, 2018,97(1):14-22.
|
[4] |
Yeung KW, Poon RW, Chu PK , et al. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials[J]. J Biomed Mater Res A, 2007,82(2):403-414.
|
[5] |
Wang XJ, Liu HY, Ren X , et al. Effects of fluoride-ion-implanted Titanium surface on the cytocompatibility in vitro and osseointegatation in vivo for dental implant applications[J]. Colloids Surf B Biointerfaces, 2015,136:752-760.
|
[6] |
Zhu H, Jin G, Cao H , et al. Influence of implantation voltage on the biological properties of zinc-implanted titanium[J]. Sur Coat Tech, 2017,312:75-80.
|
[7] |
Kim BS, Kim JS, Park YM , et al. Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell[J]. Mater Sci Eng C Mater Biol Appl, 2013,33(3):1554-1560.
|
[8] |
Dou J, Chen Y, Chi Y , et al. Preparation and characterization of a calcium-phosphate-silicon coating on a Mg-Zn-Ca alloy via two-step micro-arc oxidation[J]. Phys Chem Chem Phys, 2017,19(23):15110-15119.
|
[9] |
Kung KC, Lee TM, Chen JL , et al. Characteristics and biological responses of novel coatings containing strontium by micro-arc oxidation[J]. Surf Coat Tech , 2010,205(6):1714-1722.
|
[10] |
Li Y, Wang W, Liu H , et al. Formation and in vitro/in vivo performance of "cortex-like" micro/nano-structured TiO2 coatings on titanium by micro-arc oxidation[J]. Mater Sci Eng C Mater Biol Appl, 2018,87:90-103.
|
[11] |
Tallarico DA, Gobbi AL, Paulin FP , et al. Growth and surface characterization of TiNbZr thin films deposited by magnetron sputtering for biomedical applications[J]. Mater Sci Eng C Mater Biol Appl, 2014,43:45-49.
|
[12] |
Qin S, Xu K, Nie B , et al. Approaches based on passive and active antibacterial coating on titanium to achieve antibacterial activity[J]. J Biomed Mater Res A, 2018,106(9):2531-2539.
|
[13] |
Lee JH, Koak JY, Lim YJ , et al. Effects of fluoride-modified titanium surfaces with the similar roughness on RUNX2 gene expression of osteoblast-like MG63 cells[J]. J Biomed Mater Res A, 2017,105(11):3102-3109.
|
[14] |
Collaert B, Wijnen L, De Bruyn H . A 2-year prospective study on immediate loading with fluoride-modified implants in the edentulous mandible[J]. Clin Oral Implants Res, 2011,22(10):1111-1116.
|
[15] |
Apostu D, Lucaciu O, Lucaciu GD , et al. Systemic drugs that influence titanium implant osseointegration[J]. Drug Metab Rev, 2017,49(1):92-104.
|
[16] |
Fan YP, Chen XY, Chen Y , et al. Positive effect of strontium-oxide layer on the osseointegration of moderately rough titanium surface in non-osteoporotic rabbits[J]. Clin Oral Implants Res, 2017,28(8):911-919.
|
[17] |
Choi SM, Park JW . Multifunctional effects of a modification of SLA titanium implant surface with strontium-containing nanostructures on immunoinflammatory and osteogenic cell function[J]. J Biomed Mater Res A, 2018,106(12):3009-3020.
|
[18] |
Okuzu Y, Fujibayashi S, Yamaguchi S , et al. Strontium and magnesium ions released from bioactive titanium metal promote early bone bonding in a rabbit implant model[J]. Acta Biomater, 2017,63:383-392.
|
[19] |
Zhang W, Cao H, Zhang X , et al. A strontium-incorporated nanoporous titanium implant surface for rapid osseointegration[J]. Nanoscale, 2016,8(9):5291-5301.
|
[20] |
Offermanns V, Andersen OZ, Riede G , et al. Bone regenerating effect of surface-functionalized titanium implants with sustained-release characteristics of strontium in ovariectomized rats[J]. Int J Nanomedicine, 2016,11:2431-2442.
|
[21] |
Andersen OZ, Offermanns V, Sillassen M , et al. Accelerated bone ingrowth by local delivery of strontium from surface functionalized titanium implants[J]. Biomaterials, 2013,34(24):5883-5890.
|
[22] |
Offermanns V, Andersen OZ, Sillassen M , et al. A comparative in vivo study of strontium-functionalized and SLActive implant surfaces in early bone healing[J]. Int J Nanomedicine, 2018,13:2189-2197.
|
[23] |
Offermanns V, Steinmassl O, Andersen OZ , et al. Comparing the effect of strontium-functionalized and fluoride-modified surfaces on early osseointegration[J]. J Periodontol, 2018,89(8):940-948.
|
[24] |
Noronha VT, Paula AJ, Duran G , et al. Silver nanoparticles in dentistry[J]. Dent Mater, 2017,33(10):1110-1126.
|
[25] |
Qiao S, Cao H, Zhao X , et al. Ag-plasma modification enhances bone apposition around titanium dental implants: an animal study in labrador dogs[J]. Int J Nanomedicine, 2015,10:653-664.
|
[26] |
Zhao Y, Cao H, Qin H , et al. Balancing the osteogenic and antibacterial properties of titanium by codoping of Mg and Ag: an in vitro and in vivo study[J]. ACS Appl Mater Interfaces, 2015,7(32):17826-17836.
|
[27] |
Kellesarian SV, Yunker M, Ramakrishnaiah R , et al. Does incorporating zinc in titanium implant surfaces influence osseointegration? A systematic review[J]. J Prosthet Dent, 2017,117(1):41-47.
|
[28] |
Yu Y, Jin G, Xue Y , et al. Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants[J]. Acta Biomater, 2017,49:590-603.
|
[29] |
Shi LY, Wang A, Zang FZ , et al. Tantalum-coated pedicle screws enhance implant integration[J]. Colloids Surf B Biointerfaces, 2017,160:22-32.
|
[30] |
Huo WT, Zhao LZ, Yu S , et al. Significantly enhanced osteoblast response to nano-grained pure tantalum[J]. Sci Rep, 2017,7:40868.
|
[31] |
Ding D, Xie Y, Li K , et al. Micro/Nano structural tantalum coating for enhanced osteogenic differentiation of human bone marrow stem cells[J]. Materials (Basel), 2018,11(4):546.
|
[32] |
Lee JW, Wen HB, Gubbi P , et al. New bone formation and trabecular bone microarchitecture of highly porous tantalum compared to titanium implant threads: a pilot canine study[J]. Clin Oral Implants Res, 2018,29(2):164-174.
|
[33] |
Edelmann AR, Patel D, Allen RK , et al. Retrospective analysis of porous tantalum trabecular metal-enhanced titanium dental implants[J]. J Prosthet Dent, J Prosthet Dent, 2019,121(3):404-410
|
[34] |
Zhu Y, Gu Y, Qiao S , et al. Bacterial and mammalian cells adhesion to tantalum-decorated micro-/nano-structured titanium[J]. J Biomed Mater Res A, 2017,105(3):871-878.
|
[35] |
Quinlan E, Partap S, Azevedo MM , et al. Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair[J]. Biomaterials, 2015,52:358-366.
|
[36] |
Zhou J, Zhao L . Hypoxia-mimicking Co doped TiO2 microporous coating on titanium with enhanced angiogenic and osteogenic activities[J]. Acta Biomater, 2016,43:358-368.
|
[37] |
Zhou J, Zhao L. Multifunction Sr , Co and F co-doped microporous coating on titanium of antibacterial, angiogenic and osteogenic activities[J]. Sci Rep, 2016,6:29069.
|
[38] |
Yu L, Tian Y, Qiao Y , et al. Mn-containing titanium surface with favorable osteogenic and antimicrobial functions synthesized by PIII&D[J]. Colloids Surf B Biointerfaces, 2017,152:376-384.
|
[37] |
Yu L, Qian S, Qiao YQ , et al. Multifunctional Mn-containing Titania coatings with enhanced corrosion resistance, osteogenesis and antibacterial activity[J]. J Mater Chem B, 2014,2(33):5397-5408.
|
[40] |
Heo DN, Ko WK, Lee HR , et al. Titanium dental implants surface-immobilized with gold nanoparticles as osteoinductive agents for rapid osseointegration[J]. J Colloid Interface Sci, 2016,469:129-137.
|
[41] |
Zhang D, Liu D, Zhang J , et al. Gold nanoparticles stimulate differentiation and mineralization of primary osteoblasts through the ERK/MAPK signaling pathway[J]. Mater Sci Eng C Mater Biol Appl, 2014,42:70-77.
|
[42] |
Li J, Wen J, Li B , et al. Valence state manipulation of cerium oxide nanoparticles on a titanium surface for modulating cell fate and bone formation[J]. Adv Sci (Weinh), 2018,5(2):1700678.
|