[1] |
Elgali I, Omar O, Dahlin C , et al. Guided bone regeneration: materials and biological mechanisms revisited[J]. Eur J Oral Sci, 2017,12(2):14-21.
|
[2] |
Hoornaert A, Arros C, Heymann M , et al. Biocompatibility, resorption and biofunctionality of a new synthetic biodegradable membrane for guided bone regeneration[J]. Biomed Mater, 2016,11(4):045012.
DOI
URL
|
[3] |
Won JY, Park CY, Bae JH , et al. Evaluation of 3D printed PCL/PLGA/â-TCP versus collagen membranes for guided bone regeneration in a beagle implant model[J]. Biomed Mater, 2016,11(3):13-55.
|
[4] |
Kim S, Hwang Y, Kashif M , et al. Evaluation of bone regeneration on polyhydroxyethyl-polymethyl methacrylate membrane in a rabbit calvarial defect model[J]. In Vivo, 2016,30(1):87-91.
|
[5] |
Herzberg R . Vertical guided bone regeneration for a single missing tooth span with titanium-reinforced d-PTFE membranes: clinical considerations and observations of 10 consecutive cases with up to 36 months follow-up[J]. Int J Periodontics Restorative Dent, 2017,37(6):893-900.
DOI
URL
|
[6] |
Hoornaert A, D′Arros C, Heymann MF , et al. Biocompatibility, resorption and biofunctionality of a new synthetic biodegradable membrane for guided bone regeneration[J]. Biomed Mater, 2016,11(4):12-22.
|
[7] |
Won JY, Park CY, Bae JH , et al. Evaluation of 3D printed PCL/PLGA/â-TCP versus collagen membranes for guided bone regeneration in a beagle implant model[J]. Biomed Mater, 2016,11(5):13-24.
|
[8] |
Ma S, Adayi A, Liu Z , et al. Asymmetric collagen/chitosan membrane containing minocyclineloaded chitosan nanoparticles for guided bone regeneration[J]. Sci Rep, 2016,6(5):18-22.
|
[9] |
Pourhaghgouy M, Zamanian A, Shahrezaee M , et al. Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass[J]. Mater Sci Eng C Mater Biol Appl, 2016,11(5):180-186.
|
[10] |
Huang D, Niu L, Li J , et al. Reinforced chitosan membranes by microspheres for guided bone regeneration[J]. J Mech Behav Biomed Mater, 2018,81(1):195-201.
DOI
URL
|
[11] |
Xu S, Chen X, Yang X , et al. Preparation and in vitro biological evaluation of octacalcium phosphate/bioactive glass-chitosan/alginate composite membranes potential for bone guided regeneration[J]. Biomaterials, 2015,13(3):46-65.
|
[12] |
Hasegawa H, Masui S, Ishihata H . New microperforated pure titanium membrane created by laser processing for guided regeneration of bone[J]. Br J Oral Maxillofac Surg, 2018,11(2):16-17.
|
[13] |
Rakhmatia YD, Ayukawa Y, Jinno Y , et al. Micro-computed tomography analysis of early stage bone healing using micro-porous titanium mesh for guided bone regeneration: preliminary experiment in a canine model[J]. Odontology, 2017,35(4):46-77.
|
[14] |
Sekiguchi H, Uchida K, Matsushita O , et al. Basic fibroblast growth factor fused with tandem collagen-binding domains from clostridium histolyticum collagenase ColG increases bone formation[J]. BioMed Res Int, 2018,24(2):19-20.
|
[15] |
Spinell T, Saliter J, Hackl B , et al. In-vitro cytocompatibility and growth factor content of GBR/GTR membranes[J]. Dent Mater, 2019,35(7):963-977.
|
[16] |
Caballe-Serrano J, Abdeslam-Mohamed Y, Munar-Frau A , et al. Adsorption and release kinetics of growth factors on barrier membranes for guided tissue/bone regeneration: a systematic review[J]. Arch Oral biol, 2019,100(6):57-68.
|
[17] |
Bai L, Ji P, Li X , et al. Mechanical characterization of 3D-printed individualized Ti-mesh (membrane) for alveolar bone defects[J]. J Healthc Eng, 2019,44(3):18-23.
|
[18] |
Tandon B, Blaker JJ, Cartmell SH . Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair[J]. Acta Biomater, 2018,73:1-20.
DOI
URL
|
[19] |
Ehterami A, Kazemi M, Nazari B , et al. Fabrication and characterization of highly porous barium titanate based scaffold coated by Gel/HA nanocomposite with high piezoelectric coefficient for bone tissue engineering applications[J]. J Mech Behav Biomed Mater, 2018,79(3):195-202.
|
[20] |
Shokrollahi H, Salimi F, Doostmohammadi A . The fabrication and characterization of barium titanate/akermanite nano-bio-ceramic with a suitable piezoelectric coefficient for bone defect recovery[J]. J Mech Behav Biomed Mater, 2017,74(3):365-370.
DOI
URL
|
[21] |
Yu P, Ning C, Zhang Y , et al. Bone-inspired spatially specific piezoelectricity induces bone regeneration[J]. Theranostics 2017,7(13):3387-3397.
|
[22] |
Mandracchia B, Gennari O, Bramanti A , et al. Labelfree quantification of the effects of lithium niobate polarization on cell adhesion via holographic microscopy[J]. J Biophotonics, 2018,11(8):67-98.
|
[23] |
Bai Y, Dai X, Yin Y , et al. Biomimetic piezoelectric nanocomposite membranes synergistically enhance osteogenesis of deproteinized bovine bone grafts[J]. Int J Nanomedicine, 2019,14(3):15-26.
|
[24] |
Tandon B, Blaker JJ, Cartmell SH . Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair[J]. Acta Biomaterialia, 2018,73(2):35-60.
|
[25] |
Caballe-Serrano J, Munar-Frau A, Ortiz-Puigpelat O , et al. On the search of the ideal barrier membrane for guided bone regeneration[J]. J Clin Exp Dent, 2018,10(5):e477-e483.
|
[26] |
Soldatos NK, Stylianou P, Koidou VP , et al. Limitations and options using resorbable versus nonresorbable membranes for successful guided bone regeneration[J]. Quintessence Int, 2017,48(2):131-147.
|
[27] |
Urban I . Vertical and horizontal ridge augmentation: new perspectives[M]. Berlin: Quintessenz Verlags GmbH, 2017: 117-118.
|