[1] |
Guo Z, Chen R, Zhang F , et al. Exendin-4 relieves the inhibitory effects of high glucose on the proliferation and osteoblastic differentiation of periodontal ligament stem cells[J]. Arch Oral Biol, 2018,91:9-16.
DOI
URL
|
[2] |
李五一, 谢昊, 刘建国 , 等. 人牙周膜干细胞的分离培养及初步鉴定[J]. 广东牙病防治, 2015,23(3):117-121.
|
|
Li WY, Xie H, Liu JG , et al. Isolation culture and identification of human periodontal ligament stem cells[J]. J Prev Treat Stomatol Dis, 2015,23(3):117-121.
|
[3] |
Jin L, Lu C, Wu X , et al. Targeting osteoblastic casein kinase-2 interacting protein-1 to enhance Smad-dependent BMP signaling and reverse bone formation reduction in glucocorticoid-induced osteoporosis[J]. Sci Rep, 2017,7:41295.
DOI
URL
|
[4] |
王也, 林晓萍 . 牙周炎和骨质疏松症共同危险因素及相关机制研究进展[J]. 口腔疾病防治, 2019,27(12):794-798.
|
|
Wang Y, Lin XP . Research Progress on common risk factors and related mechanisms of periodontitis and osteoporosis[J]. J Prev Treat Stomatol Dis, 2019,27(12):794-798.
|
[5] |
廖春晖, 李明飞, 叶金梅 , 等. IGF1通过BMP2-Smad1/5信号通路调控犬上颌窦黏膜干细胞成骨分化[J]. 口腔疾病防治, 2020,28(1):16-23.
|
|
Liao CH, Li MF, Ye JM , et al. IGF1 regulates osteogenic differentiation of canine maxillary sinus mucosa stem cells through bmp2-smad1/5 signal pathway[J]. J Prev Treat Stomatol Dis, 2020,28(1):16-23.
|
[6] |
李夏宁, 赵红宇, 赵华 . 牙周膜干细胞成脂分化的研究进展[J]. 口腔疾病防治, 2016,24(5):317-320.
|
|
Li XN, Zhao HY, Zhao H . The research progress of adipogenic differentiation of periodontal ligament stem cells[J]. J Prev Treat Stomatol Dis, 2016,24(5):317-320.
|
[7] |
Wang H, Li J, Zhang X , et al. Priming integrin alpha 5 promotes the osteogenic differentiation of human periodontal ligament stem cells due to cytoskeleton and cell cycle changes[J]. J Proteomics, 2018,179:122-130.
DOI
URL
|
[8] |
Han N, Zhang F, Li G , et al. Local application of IGFBP5 protein enhanced periodontal tissue regeneration via increasing the migration, cell proliferation and osteo/dentinogenic differentiation of mesenchymal stem cells in an inflammatory niche[J]. Stem Cell Res Ther, 2017,8(1):210.
DOI
URL
|
[9] |
Diomede F, D′Aurora M, Gugliandolo A , et al. Biofunctionalized scaffold in bone tissue repair[J]. Int J Mol Sci, 2018,19(4):1022.
DOI
URL
|
[10] |
Tokuda E, Fujita N, Ohhara T , et al. Casein kinase 2-interacting protein-1, a novel Akt pleckstrin homology domain-interacting protein, down-regulates PI3K/Akt signaling and suppresses tumor growth in vivo[J]. Cancer Res, 2007,67(20):9666-9676.
DOI
URL
|
[11] |
Xi S, Tie Y, Lu K , et al. N-terminal PH domain and C-terminal auto-inhibitory region of CKIP-1 coordinate to determine its nucleus-plasma membrane shuttling[J]. FEBS Lett, 2010,584(6):1223-1230.
DOI
URL
|
[12] |
Chen G M, Ding R F, Tan Y D , et al. Role of the CKIP1 gene in proliferation and apoptosis of the human lung cancer cell line H1299[J]. Genet Mol Res, 2015,14(2):4005-4014.
DOI
URL
|
[13] |
Guo B, Zhang B, Zheng L , et al. Therapeutic RNA interference targeting CKIP-1 with a cross-species sequence to stimulate bone formation[J]. Bone, 2014,59(1):76-88.
DOI
URL
|
[14] |
Zhang X, Wang Q, Wan Z , et al. CKIP-1 knockout offsets osteoporosis induced by simulated microgravity[J]. Prog Biophys Mol Biol, 2016,122(2):140-148.
DOI
URL
|
[15] |
Jin L, Chao L, Guo B , et al. Increased PLEKHO1 within osteoblasts suppresses Smad-dependent BMP signaling to inhibit bone formation during aging[J]. Aging Cell, 2017,16(2):360-376.
DOI
URL
|
[16] |
Lu K, Yin X, Weng T , et al. Targeting WW domains linker of HECT-type ubiquitin ligase Smurf1 for activation by CKIP-1[J]. Nat Cell Biol, 2008,10(8):994-1002.
DOI
URL
|
[17] |
Zhang L, Wu K, Song W , et al. Chitosan/siCKIP-1 biofunctionalized titanium implant for improved osseointegration in the osteoporotic condition[J]. Sci Rep, 2015,5:10860.
DOI
URL
|
[18] |
Liu Q, Guo Y, Wang Y , et al. miR985p promotes osteoblast differentiation in MC3T3E1 cells by targeting CKIP1[J]. Mol Med Rep, 2018,17(3):4797-4802.
|