Journal of Prevention and Treatment for Stomatological Diseases ›› 2020, Vol. 28 ›› Issue (8): 477-486.doi: 10.12016/j.issn.2096-1456.2020.08.001

• Expert Forum • Previous Articles     Next Articles

The role of the membrane of the maxillary sinus in space osteogenesis under the sinus floor after elevation of the sinus floor

CHEN Songling(),ZHU Shuangxi   

  1. Department of Stomatology, The First Affiliated Hospital, SunYat-sen University, Guangzhou 510080, China
  • Received:2019-08-11 Revised:2020-02-14 Online:2020-08-20 Published:2020-07-15
  • Contact: Songling CHEN E-mail:chensongling@hotmail.com

Abstract:

With the continuous development of maxillary sinus floor elevation technology, the osteogenesis mechanism of maxillary sinus floor elevation has always been a concern of scholars. The membrane of the maxillary sinus is an indispensable physiological structure in the process of space osteogenesis under the sinus floor after elevation of the sinus floor. In recent years, the role of the maxillary sinus floor mucosa in sinus floor space osteogenesis has been a research hotspot. Recent studies have found that the maxillary sinus floor membrane plays a role as a natural biological barrier membrane in the process of sinus floor space osteogenesis after maxillary sinus floor elevation; in addition, it has the ability to undergo osteogenesis. It has also been found that maxillary sinus membrane stem cells (MSMSCs) derived from the maxillary sinus floor membrane have characteristics of mesenchymal stem cells, which can differentiate into osteoblasts and participate in sinus floor space osteogenesis after maxillary sinus floor elevation. New studies have also found that small RNAs such as microRNAs, long noncoding RNAs and circular RNAs can regulate the osteogenic differentiation of MSMSCs, which may be important biological targets for promoting osteogenesis in the sinus floor space. In this paper, the relationship between the maxillary sinus floor mucosa and bone formation after maxillary sinus floor elevation, the barrier and osteogenic function of the maxillary sinus floor mucosa, the sources of osteoblasts involved in osteogenesis of the sinus floor space, and the molecular regulatory mechanisms of stem cells derived from maxillary sinus mucosa will be elucidated step by step.

Key words: dental implantation, maxillary sinus floor elevation, maxillary sinus floor membrane, maxillary sinus membrane stem cells, microRNAs, long non-coding RNAs, circular RNAs, osteogenic differentiation

CLC Number: 

  • R783

Figure 1

The stability and tightness of the sinus floor space after transcrestal sinus floor elevation are conducive to osteogenesis a: schematic diagram of internal maxillary sinus floor elevation; b: maxillary sinus floor elevation postsurgery; c: 12 months after maxillary sinus floor elevation"

Figure 2

The stability and tightness of the sinus floor space after lateral window sinus floor elevation are conducive to osteogenesis a: maxillary sinus floor elevation presurgery; b&c: lateral window for maxillary sinus floor elevation; d: bone powder was implanted through the bone window; e: the bone window was closed by biofilm; f: 6 months after maxillary sinus floor elevation"

Figure 3

New bone formation did not exceed the level of the top of the implant a: before the operation; b: immediately after the operation; c: 9 months after the operation; d: 12 months after the operation; e: 24 months after the operation; new bone formation did not exceed the level of the top of the implant, after internal maxillary sinus floor elevation and simultaneous implantation without bone grafting"

Figure 4

Experimental study on osteogenesis after sinus floor elevation and simultaneous dental implantation in dogs with or without bone grafting a: no new bone covered the top of the implant 6 months after the operation without bone grafting; b: new bone covered the top of the implant 6 months after the operation with bone grafting"

Figure 5

Sampling of the maxillary sinus membrane a: histological diagram of the maxillary sinus membrane, whether its innermost layer is called the periosteum or not; the latest consensus and conclusions have not been found; b: oral panorama of clinical specimens; c: materials of the human maxillary sinus membrane obtained during the operation"

Figure 6

Maxillary sinus membrane stem cells have chondrogenic capacity a: cell pellets after 4 weeks of chondrogenic induction in each group; b: comparison of cell pellet wet weight in each group; c: histology of pellets in each group; d: comparison of COL-2 expression in cell pellets of each group; e~f: quantitative comparison of chondroitin sulfate and hyaluronan in the cell pellets of each group; MSMSCs: maxillary sinus mesenchymal stem cells; BMSSCs: bone marrow stromal stem cells; DPSCs: dental pulp stem cells; PDLSCs: periodontal ligament stem cells"

Figure 7

Maxillary sinus membrane stem cells have osteogenic capacity a: the comparison of calcium nodule formation by alizarin red staining after 4 weeks of osteogenic induction in each group; b: the quantitative comparison of calcium nodule formation by alizarin red staining(ARS) after 4 weeks of osteogenic induction in each group; c: the comparison of calcium concentration in each group after 4 weeks of osteogenic induction; d: the comparison of alkaline phosphatase activity in each group after 4 weeks of osteogenic induction; e: the comparison of osteogenic factor protein expression in each group after 4 weeks of osteogenic induction; MSMSCs: maxillary sinus mesenchymal stem cells; BMSSCs: bone marrow stromal stem cells; DPSCs: dental pulp stem cells; PDLSCs: periodontal ligament stem cells"

[1] Meloni SM, Tallarico M, Lumbau A, et al. Sinus lift grafting with anorganic bovine bone versus 50% autologous bone mixed with 50% anorganic bovine bone-5-year after loading results from a randomised controlled trial[J]. Clin Oral Implants Res, 2019,30(S19):506-506.
doi: 10.1111/clr.v30.s19
[2] Boyne PJ, James RA. Grafting of the maxillary sinus floor with autogenous marrow and bone[J]. J Oral Surg, 1980,38(8):613-616.
pmid: 6993637
[3] Summers RB. A new concept in maxillary implant surgery: the osteotome technique[J]. Compendium, 1994, 38(): 152, 154-156.
[4] Khojasteh A, Kheiri L, Motamedian SR, et al. Guided bone regeneration for the reconstruction of alveolar bone defects[J]. Ann Maxillofac Surg, 2017,7(2):263-267.
doi: 10.4103/ams.ams_76_17 pmid: 29264297
[5] Zitzmann NU, Schärer P. Sinus elevation procedures in the resorbed posterior maxilla. Comparison of the crestal and lateral approaches[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1998,85(1):8-17.
doi: 10.1016/s1079-2104(98)90391-2 pmid: 9474608
[6] Nejat Nizam, Önder Gürlek, Mehmet Emin Kaval. Extra-short implants with osteotome sinus floor elevation: a prospective clinical study[J]. Int J Oral Maxillofac Implants, 2020,35(2):415-422.
pmid: 32142579
[7] Park YH, Jung UW, Kim CS, et al. Resonance frequency analysis of tapered implants placed at maxillary posterior sites after lateral sinus augmentation: a 1.5-year follow-up prospective studyt[J]. Implant Dent, 2019,28(1):62-67.
pmid: 30640311
[8] Lundgren S, Anderson S, Federico G, et al. Bone reformation with sinus membrane elevation: a new surgical technique for maxillary sinus floor augmentation[J]. Clin Implant Dent Relat Res, 2004,6(3):165-173.
pmid: 15726851
[9] Cricchio G, Palma VC, Faria PE, et al. Histological findings following the use of a space-making device for bone reformation and implant integration in the maxillary sinus of primates[J]. Clin Implant Dent Relat Res, 2009,11(Suppl 1):e14-e22.
[10] Cossellu G, Farronato G, Farronato D, et al. Space-maintaining management in maxillary sinus lifting: a novel technique using a resorbable polymeric thermo-reversible gel[J]. Int J Oral Maxillofac Surg, 2017,46(5):648-654.
[11] Atef M, Hakam MM, Elfaramawey MI, et al. Nongrafted sinus floor elevation with a space-maintaining titanium mesh: case-series study on four patients[J]. Clin Implant Dent Relat Res, 2014,16(6):893-903.
doi: 10.1111/cid.12064 pmid: 23551586
[12] Park WB, Kang KL, Han JY. Factors influencing long-term survival rates of implants placed simultaneously with lateral maxillary sinus floor augmentation: a 6-to 20-year retrospective study[J]. Clin Oral Implants Res, 2019,30(10):977-988.
pmid: 31306519
[13] Fouad W, Osman A, Atef M, et al. Guided maxillary sinus floor elevation using deproteinized bovine bone versus graftless schneiderian membrane elevation with simultaneous implant placement: randomized clinical trial[J]. Clin Implant Dent Relat Res, 2018,20(3):424-433.
doi: 10.1111/cid.12601 pmid: 29575547
[14] Behrend C, Carmouche J, Millhouse PW, et al. Allogeneic and autogenous bone grafts are affected by historical donor environmental exposure[J]. Clin Orthop Relat Res, 2016,474(6):1405-1409.
doi: 10.1007/s11999-015-4572-7 pmid: 26511634
[15] Scala A, Botticelli D, Faeda RS, et al. Lack of influence of the Schneiderian membrane in forming new bone apical to implants simultaneously installed with sinus floor elevation: an experimental study in monkeys[J]. Clin Oral Implants Res, 2012,23(2):175-181.
doi: 10.1111/j.1600-0501.2011.02227.x pmid: 21668505
[16] Mohan N, Wolf J, Dym H. Maxillary sinus augmentation[J]. Dent Clin North Am, 2015,59(2):375-388.
doi: 10.1016/j.cden.2014.10.001 pmid: 25835800
[17] Chen HH, Lin YC, Lee SY, et al. Influence of sinus floor configuration on grafted bone remodeling after osteotome sinus floor elevation[J]. J Periodontol, 2017,88(1):10-16.
pmid: 27611338
[18] Zhu LQ, Yang JK, Gong JX, et al. Optimized beagle model for maxillary sinus floor augmentation via a mini-lateral window with simultaneous implant placement[J]. J Int Med Res, 2018,46(11):4684-4692.
doi: 10.1177/0300060518796759 pmid: 30198388
[19] Falah M, Srouji S. Use of buccal fat pad for closure of perforation and graft material in a maxillary sinus elevation procedure: a preliminary study[J]. Int J Oral Maxillofac Implants, 2016,31(4):842-848.
doi: 10.11607/jomi.4406 pmid: 27447151
[20] Danesh-Sani SA, Loomer PM, Wallace SS. A comprehensive clinical review of maxillary sinus floor elevation: anatomy, techniques, biomaterials and complications[J]. Br J Oral Maxillofac Surg, 2016,54(7):724-730.
doi: 10.1016/j.bjoms.2016.05.008 pmid: 27235382
[21] Palma VC, Magro-Filho O, de Oliveria JA, et al. Bone reformation and implant integration following maxillary sinus membrane elevation: an experimental study in primates[J]. Clin Implant Dent Relat Res, 2006,8(1):11-24.
doi: 10.2310/j.6480.2005.00026.x pmid: 16681489
[22] Moraschini V, Uzeda MG, Sartoretto SC, et al. Maxillary sinus floor elevation with simultaneous implant placement without grafting materials: a systematic review and meta-analysis[J]. Int J Oral Maxillofac Surg, 2017,46(5):636-647.
doi: 10.1016/j.ijom.2017.01.021 pmid: 28254402
[23] Starch-Jensen T, Schou S. Maxillary sinus membrane elevation with simultaneous installation of implants without the use of a graft material: a systematic review[J]. Implant Dent, 2017,26(4):621-633.
doi: 10.1097/ID.0000000000000617 pmid: 28639983
[24] Elgali I, Omar O, Dahlin C, et al. Guided bone regeneration: materials and biological mechanisms revisited[J]. Eur J Oral Sci, 2017,125(5):315-337.
[25] Angelo T, Marcel W, Andreas K, et al. Biomechanical stability of dental implants in augmented maxillary sites: results of a randomized clinical study with four different biomaterials and PRF and a biological view on guided bone regeneration[J]. Biomed Res Int, 2015: 1-17.
[26] Li X, Chen SL, Zhu SX, et al. Guided bone regeneration using collagen membranes for sinus augmentation[J]. Br J Oral Maxillofac Surg, 2012,50(1):69-73.
doi: 10.1016/j.bjoms.2010.10.013 pmid: 21227554
[27] Mahler D, Levin L, Zigdon H, et al. The "dome phenomenon" associated with maxillary sinus augmentation[J]. Clin Implant Dent Relat Res, 2009,11(Suppl 1):e46-e51.
doi: 10.1111/j.1708-8208.2009.00178.x
[28] Lundgren S, Andersson S, Sennerby L. Spontaneous bone formation in the maxillary sinus after removal of a cyst: coincidence or consequence?[J]. Clin Implant Dent Relat Res, 2003,5(2):78-81.
doi: 10.1111/j.1708-8208.2003.tb00187.x pmid: 14536041
[29] Jung YS, Chung SW, Nam W, et al. Spontaneous bone formation on the maxillary sinus floor in association with an extraction socket[J]. Int J Oral Maxillofac Surg, 2007,36(7):656-657.
doi: 10.1016/j.ijom.2007.01.013 pmid: 17367999
[30] Srouji S, Ben-David D, Lotan R, et al. The innate osteogenic potential of the maxillary sinus (Schneiderian) membrane: an ectopic tissue transplant model simulating sinus lifting[J]. Int J Oral Maxillofac Surg, 2010,39(8):793-801.
doi: 10.1016/j.ijom.2010.03.009 pmid: 20417057
[31] Gruber R, Kandler B, Fuerst G, et al. Porcine sinus mucosa holds cells that respond to bone morphogenetic protein (BMP)-6 and BMP-7 with increased osteogenic differentiation in vitro[J]. Clin Oral Implants Res, 2004,15(5):575-580.
doi: 10.1111/j.1600-0501.2004.01062.x pmid: 15355400
[32] Guo JB, Weng JQ, Rong Q, et al. Investigation of multipotent postnatal stem cells from human maxillary sinus membrane[J]. Sci Rep, 2015,5(1):11660.
doi: 10.1038/srep11660
[33] An J, Yang H, Zhang Q, et al. Natural products for treatment of osteoporosis: the effects and mechanisms on promoting osteoblast-mediated bone formation[J]. Life Sci, 2016,147:46-58.
doi: 10.1016/j.lfs.2016.01.024 pmid: 26796578
[34] Liu X, Li Q, Wang F, et al. Maxillary sinus floor augmentation and dental implant placement using dentin matrix protein-1 gene-modified bone marrow stromal cells mixed with deproteinized boving bone: a comparative study in beagles[J]. Arch Oral Biol, 2016,64:102-108.
doi: 10.1016/j.archoralbio.2016.01.004 pmid: 26826470
[35] Zhou Q, Yu BH, Liu WC, et al. BM-MSCs and Bio-Oss complexes enhanced new bone formation during maxillary sinus floor augmentation by promoting differentiation of BM-MSCs[J]. In Vitro Cell Dev Biol Anim, 2016,52(7):757-771.
doi: 10.1007/s11626-015-9995-7 pmid: 27251156
[36] Barbu HM, Andreescu CF, Comaneanu MR, et al. Maxillary sinus floor augmentation to enable one-stage implant placement by using bovine bone substitute and platelet-rich fibrin[J]. Biomed Res Int, 2018: 1-6.
[37] Bonazza V, Borsani E, Buffoli B, et al. In vitro treatment with concentrated growth factors (CGF) and Sodium orthosilicate positively affects cell renewal in three different human cell lines[J]. Cell Biol Int, 2018,42(3):353-364.
pmid: 29105212
[38] Chen X, Wang J, Yu L, et al. Effect of concentrated growth factor (CGF) on the promotion of osteogenesis in bone marrow stromal cells (BMSC) in vivo[J]. Sci Rep, 2018,8(1):5876.
doi: 10.1038/s41598-018-24364-5 pmid: 29651154
[39] Rong Q, Li X, Chen SL, et al. Effect of the schneiderian membrane on the formation of bone after lifting the floor of the maxillary sinus: an experimental study in dogs[J]. Br J Oral Maxillofac Surg, 2015,53(7):607-612.
doi: 10.1016/j.bjoms.2015.02.010 pmid: 26025764
[40] 张静, 朱双喜, 彭伟, 等. 犬上颌窦黏膜干细胞的培养和成骨性能的鉴定[J]. 口腔疾病防治, 2018,26(7):422-427.
Zhang J, Zhu SX, Peng W , et al. Culture and identification the osteogenic property of maxillary sinus membrane stem cells[J]. J Prev Treant Stomatol Dis , 2018,26(7):422-427.
[41] Luan ZJ, Liu BL, Shi LA. Angiotensin II-induced micro RNA-21 culprit for non-small-cell lung adenocarcinoma[J]. Drug Dev Res, 2019,80(8):1031-1039.
doi: 10.1002/ddr.21597 pmid: 31823412
[42] Gu X, Li M, Jin Y, et al. Identification and integrated analysis of differentially expressed lncRNAs and circRNAs reveal the potential ceRNA networks during PDLSC osteogenic differentiation[J]. BMC Genet, 2017,18(1):100.
doi: 10.1186/s12863-017-0569-4 pmid: 29197342
[43] Li X, Wu Z, Fu X, et al. lncRNAs: insights into their function and mechanics in underlying disorders[J]. Mutat Res Rev Mutat Res, 2014,762:1-21.
doi: 10.1016/j.mrrev.2014.04.002 pmid: 25485593
[44] Fan FY, Rui D, Ling Q, et al. miR-203a-3p.1 is involved in the regulation of osteogenic differentiation by directly targeting Smad9 in MM-MSCs[J]. Oncol Lett, 2019,18(6):6339-6346.
doi: 10.3892/ol.2019.10994 pmid: 31788111
[45] 荣琼, 朱双喜, 陈松龄, 等. 侧壁开窗法上颌窦底提升术植入Bio-Oss后骨生成的mRNA表达谱[J]. 中国病理生理杂志, 2013,29(6):1102-1113.
doi: 10.3969/j.issn.1000-4718.2013.06.025
Rong Q, Zhu SX, Chen SL , et al. Transcriptional profiling of bone formation after Bio-Oss implantation in maxillary sinus floor elevation by lateral window approach[J]. Chin J Pathophysiology, 2013,29(6) : 1102-1113.
doi: 10.3969/j.issn.1000-4718.2013.06.025
[46] Peng W, Zhu SX, Li X, et al. miR-27b-3p suppressed osteogenic differentiation of maxillary sinus membrane stem cells by targeting Sp7[J]. Implant Dent, 2017,26(4):492-499.
doi: 10.1097/ID.0000000000000637 pmid: 28719571
[47] Zhu SX, Peng W, Li X, et al. miR-1827 inhibits osteogenic differentiation by targeting IGF1 in MSMSCs[J]. Sci Rep, 2017,7:46136.
doi: 10.1038/srep46136 pmid: 28387248
[48] Fang Y, Fullwood MJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer[J]. Genomics Proteomics Bioinformatics, 2016,14(1):42-54.
doi: 10.1016/j.gpb.2015.09.006 pmid: 26883671
[49] Peng W, Zhu SX, Wang J, et al. Lnc-NTF3-5 promotes osteogenic differentiation of maxillary sinus membrane stem cells via sponging miR-93-3p[J]. Clin Implant Dent Relat Res, 2018,20(2):110-121.
doi: 10.1111/cid.12553 pmid: 29106055
[50] Weng JQ, Peng W, Zhu SX, et al. Long noncoding RNA sponges miR-454 to promote osteogenic differentiation in maxillary sinus membrane stem cells[J]. Implant Dent, 2017,26(2):178-186.
doi: 10.1097/ID.0000000000000569 pmid: 28301382
[51] Qian DY, Yan GB, Bai B, et al. Differential circRNA expression profiles during the BMP2-induced osteogenic differentiation of MC3T3-E1 cells[J]. Biomedicine & Pharmacotherapy, 2017,90:492-499.
doi: 10.1016/j.biopha.2017.03.051 pmid: 28395271
[52] Pamudurti NR, Bartok O, Jens M, et al. Translation of circRNAs[J]. Mol Cell, 2017,66(1):9-21.
doi: 10.1016/j.molcel.2017.02.021 pmid: 28344080
[53] Peng W, Zhu SX, Chen JL, et al. Hsa_circRNA_33287 promotes the osteogenic differentiation of maxillary sinus membrane stem cells via miR-214-3p/Runx3[J]. Biomedicine & Pharmacotherapy, 2019,109:1709-1717.
doi: 10.1016/j.biopha.2018.10.159 pmid: 30551425
[1] QIN Qing,SONG Yang,LIU Jia,LI Qiang. Effects of casein kinase 2 interacting protein-1 on the osteogenic differentiation ability of human periodontal ligament stem cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(7): 421-426.
[2] WANG Zhiheng,ZUO Jie,WANG Mengqi,ZHU Shaojun,LIU Yishan. miR-214 inhibits the osteogenic differentiation of dental follicle cells in vitro [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(3): 146-152.
[3] ZHOU Jiaqi,SHU Linjing,XIONG Yi,ZHANG Yixin,XIANG Lin,WU Yingying. Study on the role of FoxO1 in the regulation of osteoblastic metabolism by 1,25(OH)2D3 in a high glucose environment [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(1): 24-29.
[4] LIAO Chunhui,LI Mingfei,YE Jinmei,PENG Wei,CHEN Songling. The regulatory mechanisms of IGF1 in the osteogenic differentiation of canine MSMSCs via BMP2-Smad1/5 signaling pathway [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(1): 16-23.
[5] REN Qingyuan,HE Wulin,WANG Qing,CHU Hongxing,LIN Haiyan. Effect of endoplasmic reticulum stress on the osteogenic differentiation of periodontal ligament cells under continuous static pressure [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(8): 485-489.
[6] Jing ZHANG, Shuangxi ZHU, Qiong RONG, Wei PENG, Xiang LI, Songling CHEN. Role of miR-27a in the osteogenic differentiation of beagle maxillary sinus membrane stem cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(8): 484-490.
[7] Xiumei ZHENG, Wenxia HUANG. Effects of inflammatory microenvironment mediated by macrophage on the proliferation and osteogenic differentiation of periodontal ligament cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(5): 297-303.
[8] Zetao CHEN,Xiaoshuang WANG,Linjun ZHANG. The concept of “osteoimmunomodulation” and its application in the development of “osteoimmune-smart” bone substitute materials [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(11): 688-698.
[9] Lin YUAN, Jun QIAN, Zhengyi YANG, Han WANG, Wucheng GUO, Jieli CHENG, Jingjing SONG, Enliang HE, Yi ZHANG. Comparison of osteogenic differentiation abilities of mesenchymal stem cells from different sources of hBMSCs [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(9): 554-559.
[10] Jingwen PANG, Yalin WU, Ting XU, Xiumei ZHUANG. Effects of hypoxic condition on osteogenic differentiation of human periodontal ligament cells via hypoxia inducible factor-1α [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(8): 488-493.
[11] Hai GAO,Xiao CHEN,Dong-hua GUAN,Ying-jie ZHANG,Chang-lü LIN. Effects of high glucose on osteogenic differentiation of hBMSC [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(1): 26-30.
[12] Hong-chang LAI,Jun-yu SHI. Maxillary sinus floor elevation [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(1): 8-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHEN Shuwei,YANG Ankui,ZHANG Quan,CHEN Wenkuan,LI Hao,LI Qiuli,CHEN Yanfeng,CHEN Weichao,YANG Zhongyuan,ZHANG Xing,SONG Ming. Analysis of clinicopathological characteristics and survival of 1 915 oral cavity squamous cell carcinoma patients: 24-year experience from a single institution[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(8): 487 -493 .
[2] KONG Jingjing,LI Chunnian,YIN Liangliang,DAI Xinpeng. Experimental study on central location ability and clearance rate of three nickel-titanium instruments for root canal retreatment[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(8): 494 -498 .
[3] CAO Li,ZHANG Ning,BAI Yuxing. Mechanical strength and inhibition of plaque biofilm activity of a novel antibacterial Hawley retainer[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(8): 499 -505 .
[4] ZHU Shaojun,RENA· Maimaiti,ZHANG Bei,WANG Zhiheng,GE Jinlian,LIU Yishan. Serum levels of iron, zinc, copper and vitamin D in severe early childhood caries[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(8): 506 -509 .
[5] LI Ming,YAN Xingquan,NAN Xinrong. Clinical report of cheek mass after injection and filling of hyaluronic acid in the cheek[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(8): 510 -513 .
[6] SHANG Linjuan,ZHANG Jianming,LI Jiankai,LI Jianbo,HUANG Shaohong. An epidemiological investigation of the oral health behavior of 7 680 adolescents aged 12-15 years in Guangdong Province[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(8): 514 -518 .
[7] HUANG Jiacheng,WU Xiayi,CHEN Danying,TANG Zhiying,LIU Quan. Prevention of hematoma on the floor of the mouth during dental implant surgery in the anterior mandible[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(8): 519 -524 .
[8] LIAO Wen,ZHAO Jianxin,LV Jinzhao,WANG Xinchen,FANG Yiru,MATSUMOTO Naoyuki. An introduction to the orthodontic resident training program at Osaka Dental University and its reference value to orthodontic resident training in China[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(8): 525 -529 .
[9] LIU Jingjing,LUO Qiyue,WANG Jing,CHEN Lei,MAN Yi,QU Yili. The application of digital technology in preclinical education for graduate students majoring in oral implantation[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(8): 530 -534 .
[10] XU Bin,BI Liangjia. Research progress of sonodynamic therapy in the field of stomatology[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(8): 535 -539 .
This work is licensed under a Creative Commons Attribution 3.0 License.