Journal of Prevention and Treatment for Stomatological Diseases ›› 2020, Vol. 28 ›› Issue (8): 477-486.DOI: 10.12016/j.issn.2096-1456.2020.08.001
• Expert Forum • Previous Articles Next Articles
Received:
2019-08-11
Revised:
2020-02-14
Online:
2020-08-20
Published:
2020-07-15
Contact:
Songling CHEN
通讯作者:
陈松龄
作者简介:
陈松龄,主任医师,教授,博士生导师,中山大学第一附属医院口腔科学科带头人,首席专家。兼任中华口腔医学会牙及牙槽外科专业委员会副主任委员,中华口腔医学会口腔颌面外科专业委员会委员,中国香港地区口腔种植学会副会长,国际口腔种植医师学会(The International Congress of Oral Implantologists,ICOI)中国总会副会长,中国康复医学会修复重建外科专业委员会颅颌面外科学组委员,广东省口腔医学会理事,广东省临床医学学会牙种植学专业委员会主任委员,广东省口腔医学会口腔种植学专业委员会副主任委员、口腔颌面外科专业委员会常务委员,《口腔疾病防治》、《中华口腔医学研究杂志(电子版)》等期刊编委。主持承担国家自然科学基金、省级科研基金课题12项。获得广东省科学技术奖1项。发表学术论文120篇,其中以第一或通信作者发表SCI论文23篇。在国际上提出上颌窦黏膜干细胞成骨概念,获得2017年国际口腔种植医师学会最高年度奖(Ralph V. Mckinney,Jr. Award in basic and clinical research for 2017)
基金资助:
CLC Number:
CHEN Songling,ZHU Shuangxi. The role of the membrane of the maxillary sinus in space osteogenesis under the sinus floor after elevation of the sinus floor[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(8): 477-486.
陈松龄,朱双喜. 上颌窦底黏膜在上颌窦底提升术后窦底空间成骨中的作用[J]. 口腔疾病防治, 2020, 28(8): 477-486.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.kqjbfz.com/EN/10.12016/j.issn.2096-1456.2020.08.001
Figure 1 The stability and tightness of the sinus floor space after transcrestal sinus floor elevation are conducive to osteogenesis a: schematic diagram of internal maxillary sinus floor elevation; b: maxillary sinus floor elevation postsurgery; c: 12 months after maxillary sinus floor elevation
Figure 2 The stability and tightness of the sinus floor space after lateral window sinus floor elevation are conducive to osteogenesis a: maxillary sinus floor elevation presurgery; b&c: lateral window for maxillary sinus floor elevation; d: bone powder was implanted through the bone window; e: the bone window was closed by biofilm; f: 6 months after maxillary sinus floor elevation
Figure 3 New bone formation did not exceed the level of the top of the implant a: before the operation; b: immediately after the operation; c: 9 months after the operation; d: 12 months after the operation; e: 24 months after the operation; new bone formation did not exceed the level of the top of the implant, after internal maxillary sinus floor elevation and simultaneous implantation without bone grafting
Figure 4 Experimental study on osteogenesis after sinus floor elevation and simultaneous dental implantation in dogs with or without bone grafting a: no new bone covered the top of the implant 6 months after the operation without bone grafting; b: new bone covered the top of the implant 6 months after the operation with bone grafting
Figure 5 Sampling of the maxillary sinus membrane a: histological diagram of the maxillary sinus membrane, whether its innermost layer is called the periosteum or not; the latest consensus and conclusions have not been found; b: oral panorama of clinical specimens; c: materials of the human maxillary sinus membrane obtained during the operation
Figure 6 Maxillary sinus membrane stem cells have chondrogenic capacity a: cell pellets after 4 weeks of chondrogenic induction in each group; b: comparison of cell pellet wet weight in each group; c: histology of pellets in each group; d: comparison of COL-2 expression in cell pellets of each group; e~f: quantitative comparison of chondroitin sulfate and hyaluronan in the cell pellets of each group; MSMSCs: maxillary sinus mesenchymal stem cells; BMSSCs: bone marrow stromal stem cells; DPSCs: dental pulp stem cells; PDLSCs: periodontal ligament stem cells
Figure 7 Maxillary sinus membrane stem cells have osteogenic capacity a: the comparison of calcium nodule formation by alizarin red staining after 4 weeks of osteogenic induction in each group; b: the quantitative comparison of calcium nodule formation by alizarin red staining(ARS) after 4 weeks of osteogenic induction in each group; c: the comparison of calcium concentration in each group after 4 weeks of osteogenic induction; d: the comparison of alkaline phosphatase activity in each group after 4 weeks of osteogenic induction; e: the comparison of osteogenic factor protein expression in each group after 4 weeks of osteogenic induction; MSMSCs: maxillary sinus mesenchymal stem cells; BMSSCs: bone marrow stromal stem cells; DPSCs: dental pulp stem cells; PDLSCs: periodontal ligament stem cells
[1] |
Meloni SM, Tallarico M, Lumbau A, et al. Sinus lift grafting with anorganic bovine bone versus 50% autologous bone mixed with 50% anorganic bovine bone-5-year after loading results from a randomised controlled trial[J]. Clin Oral Implants Res, 2019,30(S19):506-506.
DOI URL |
[2] |
Boyne PJ, James RA. Grafting of the maxillary sinus floor with autogenous marrow and bone[J]. J Oral Surg, 1980,38(8):613-616.
URL PMID |
[3] | Summers RB. A new concept in maxillary implant surgery: the osteotome technique[J]. Compendium, 1994, 38(): 152, 154-156. |
[4] |
Khojasteh A, Kheiri L, Motamedian SR, et al. Guided bone regeneration for the reconstruction of alveolar bone defects[J]. Ann Maxillofac Surg, 2017,7(2):263-267.
DOI URL PMID |
[5] |
Zitzmann NU, Schärer P. Sinus elevation procedures in the resorbed posterior maxilla. Comparison of the crestal and lateral approaches[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1998,85(1):8-17.
DOI URL PMID |
[6] |
Nejat Nizam, Önder Gürlek, Mehmet Emin Kaval. Extra-short implants with osteotome sinus floor elevation: a prospective clinical study[J]. Int J Oral Maxillofac Implants, 2020,35(2):415-422.
URL PMID |
[7] |
Park YH, Jung UW, Kim CS, et al. Resonance frequency analysis of tapered implants placed at maxillary posterior sites after lateral sinus augmentation: a 1.5-year follow-up prospective studyt[J]. Implant Dent, 2019,28(1):62-67.
URL PMID |
[8] |
Lundgren S, Anderson S, Federico G, et al. Bone reformation with sinus membrane elevation: a new surgical technique for maxillary sinus floor augmentation[J]. Clin Implant Dent Relat Res, 2004,6(3):165-173.
URL PMID |
[9] | Cricchio G, Palma VC, Faria PE, et al. Histological findings following the use of a space-making device for bone reformation and implant integration in the maxillary sinus of primates[J]. Clin Implant Dent Relat Res, 2009,11(Suppl 1):e14-e22. |
[10] | Cossellu G, Farronato G, Farronato D, et al. Space-maintaining management in maxillary sinus lifting: a novel technique using a resorbable polymeric thermo-reversible gel[J]. Int J Oral Maxillofac Surg, 2017,46(5):648-654. |
[11] |
Atef M, Hakam MM, Elfaramawey MI, et al. Nongrafted sinus floor elevation with a space-maintaining titanium mesh: case-series study on four patients[J]. Clin Implant Dent Relat Res, 2014,16(6):893-903.
DOI URL PMID |
[12] |
Park WB, Kang KL, Han JY. Factors influencing long-term survival rates of implants placed simultaneously with lateral maxillary sinus floor augmentation: a 6-to 20-year retrospective study[J]. Clin Oral Implants Res, 2019,30(10):977-988.
URL PMID |
[13] |
Fouad W, Osman A, Atef M, et al. Guided maxillary sinus floor elevation using deproteinized bovine bone versus graftless schneiderian membrane elevation with simultaneous implant placement: randomized clinical trial[J]. Clin Implant Dent Relat Res, 2018,20(3):424-433.
DOI URL PMID |
[14] |
Behrend C, Carmouche J, Millhouse PW, et al. Allogeneic and autogenous bone grafts are affected by historical donor environmental exposure[J]. Clin Orthop Relat Res, 2016,474(6):1405-1409.
DOI URL PMID |
[15] |
Scala A, Botticelli D, Faeda RS, et al. Lack of influence of the Schneiderian membrane in forming new bone apical to implants simultaneously installed with sinus floor elevation: an experimental study in monkeys[J]. Clin Oral Implants Res, 2012,23(2):175-181.
DOI URL PMID |
[16] |
Mohan N, Wolf J, Dym H. Maxillary sinus augmentation[J]. Dent Clin North Am, 2015,59(2):375-388.
DOI URL PMID |
[17] |
Chen HH, Lin YC, Lee SY, et al. Influence of sinus floor configuration on grafted bone remodeling after osteotome sinus floor elevation[J]. J Periodontol, 2017,88(1):10-16.
URL PMID |
[18] |
Zhu LQ, Yang JK, Gong JX, et al. Optimized beagle model for maxillary sinus floor augmentation via a mini-lateral window with simultaneous implant placement[J]. J Int Med Res, 2018,46(11):4684-4692.
DOI URL PMID |
[19] |
Falah M, Srouji S. Use of buccal fat pad for closure of perforation and graft material in a maxillary sinus elevation procedure: a preliminary study[J]. Int J Oral Maxillofac Implants, 2016,31(4):842-848.
DOI URL PMID |
[20] |
Danesh-Sani SA, Loomer PM, Wallace SS. A comprehensive clinical review of maxillary sinus floor elevation: anatomy, techniques, biomaterials and complications[J]. Br J Oral Maxillofac Surg, 2016,54(7):724-730.
DOI URL PMID |
[21] |
Palma VC, Magro-Filho O, de Oliveria JA, et al. Bone reformation and implant integration following maxillary sinus membrane elevation: an experimental study in primates[J]. Clin Implant Dent Relat Res, 2006,8(1):11-24.
DOI URL PMID |
[22] |
Moraschini V, Uzeda MG, Sartoretto SC, et al. Maxillary sinus floor elevation with simultaneous implant placement without grafting materials: a systematic review and meta-analysis[J]. Int J Oral Maxillofac Surg, 2017,46(5):636-647.
DOI URL PMID |
[23] |
Starch-Jensen T, Schou S. Maxillary sinus membrane elevation with simultaneous installation of implants without the use of a graft material: a systematic review[J]. Implant Dent, 2017,26(4):621-633.
DOI URL PMID |
[24] | Elgali I, Omar O, Dahlin C, et al. Guided bone regeneration: materials and biological mechanisms revisited[J]. Eur J Oral Sci, 2017,125(5):315-337. |
[25] | Angelo T, Marcel W, Andreas K, et al. Biomechanical stability of dental implants in augmented maxillary sites: results of a randomized clinical study with four different biomaterials and PRF and a biological view on guided bone regeneration[J]. Biomed Res Int, 2015: 1-17. |
[26] |
Li X, Chen SL, Zhu SX, et al. Guided bone regeneration using collagen membranes for sinus augmentation[J]. Br J Oral Maxillofac Surg, 2012,50(1):69-73.
DOI URL PMID |
[27] |
Mahler D, Levin L, Zigdon H, et al. The "dome phenomenon" associated with maxillary sinus augmentation[J]. Clin Implant Dent Relat Res, 2009,11(Suppl 1):e46-e51.
DOI URL |
[28] |
Lundgren S, Andersson S, Sennerby L. Spontaneous bone formation in the maxillary sinus after removal of a cyst: coincidence or consequence?[J]. Clin Implant Dent Relat Res, 2003,5(2):78-81.
DOI URL PMID |
[29] |
Jung YS, Chung SW, Nam W, et al. Spontaneous bone formation on the maxillary sinus floor in association with an extraction socket[J]. Int J Oral Maxillofac Surg, 2007,36(7):656-657.
DOI URL PMID |
[30] |
Srouji S, Ben-David D, Lotan R, et al. The innate osteogenic potential of the maxillary sinus (Schneiderian) membrane: an ectopic tissue transplant model simulating sinus lifting[J]. Int J Oral Maxillofac Surg, 2010,39(8):793-801.
DOI URL PMID |
[31] |
Gruber R, Kandler B, Fuerst G, et al. Porcine sinus mucosa holds cells that respond to bone morphogenetic protein (BMP)-6 and BMP-7 with increased osteogenic differentiation in vitro[J]. Clin Oral Implants Res, 2004,15(5):575-580.
DOI URL PMID |
[32] |
Guo JB, Weng JQ, Rong Q, et al. Investigation of multipotent postnatal stem cells from human maxillary sinus membrane[J]. Sci Rep, 2015,5(1):11660.
DOI URL |
[33] |
An J, Yang H, Zhang Q, et al. Natural products for treatment of osteoporosis: the effects and mechanisms on promoting osteoblast-mediated bone formation[J]. Life Sci, 2016,147:46-58.
DOI URL PMID |
[34] |
Liu X, Li Q, Wang F, et al. Maxillary sinus floor augmentation and dental implant placement using dentin matrix protein-1 gene-modified bone marrow stromal cells mixed with deproteinized boving bone: a comparative study in beagles[J]. Arch Oral Biol, 2016,64:102-108.
DOI URL PMID |
[35] |
Zhou Q, Yu BH, Liu WC, et al. BM-MSCs and Bio-Oss complexes enhanced new bone formation during maxillary sinus floor augmentation by promoting differentiation of BM-MSCs[J]. In Vitro Cell Dev Biol Anim, 2016,52(7):757-771.
DOI URL PMID |
[36] | Barbu HM, Andreescu CF, Comaneanu MR, et al. Maxillary sinus floor augmentation to enable one-stage implant placement by using bovine bone substitute and platelet-rich fibrin[J]. Biomed Res Int, 2018: 1-6. |
[37] |
Bonazza V, Borsani E, Buffoli B, et al. In vitro treatment with concentrated growth factors (CGF) and Sodium orthosilicate positively affects cell renewal in three different human cell lines[J]. Cell Biol Int, 2018,42(3):353-364.
URL PMID |
[38] |
Chen X, Wang J, Yu L, et al. Effect of concentrated growth factor (CGF) on the promotion of osteogenesis in bone marrow stromal cells (BMSC) in vivo[J]. Sci Rep, 2018,8(1):5876.
DOI URL PMID |
[39] |
Rong Q, Li X, Chen SL, et al. Effect of the schneiderian membrane on the formation of bone after lifting the floor of the maxillary sinus: an experimental study in dogs[J]. Br J Oral Maxillofac Surg, 2015,53(7):607-612.
DOI URL PMID |
[40] | 张静, 朱双喜, 彭伟, 等. 犬上颌窦黏膜干细胞的培养和成骨性能的鉴定[J]. 口腔疾病防治, 2018,26(7):422-427. |
Zhang J, Zhu SX, Peng W , et al. Culture and identification the osteogenic property of maxillary sinus membrane stem cells[J]. J Prev Treant Stomatol Dis , 2018,26(7):422-427. | |
[41] |
Luan ZJ, Liu BL, Shi LA. Angiotensin II-induced micro RNA-21 culprit for non-small-cell lung adenocarcinoma[J]. Drug Dev Res, 2019,80(8):1031-1039.
DOI URL PMID |
[42] |
Gu X, Li M, Jin Y, et al. Identification and integrated analysis of differentially expressed lncRNAs and circRNAs reveal the potential ceRNA networks during PDLSC osteogenic differentiation[J]. BMC Genet, 2017,18(1):100.
DOI URL PMID |
[43] |
Li X, Wu Z, Fu X, et al. lncRNAs: insights into their function and mechanics in underlying disorders[J]. Mutat Res Rev Mutat Res, 2014,762:1-21.
DOI URL PMID |
[44] |
Fan FY, Rui D, Ling Q, et al. miR-203a-3p.1 is involved in the regulation of osteogenic differentiation by directly targeting Smad9 in MM-MSCs[J]. Oncol Lett, 2019,18(6):6339-6346.
DOI URL PMID |
[45] |
荣琼, 朱双喜, 陈松龄, 等. 侧壁开窗法上颌窦底提升术植入Bio-Oss后骨生成的mRNA表达谱[J]. 中国病理生理杂志, 2013,29(6):1102-1113.
DOI URL |
Rong Q, Zhu SX, Chen SL , et al. Transcriptional profiling of bone formation after Bio-Oss implantation in maxillary sinus floor elevation by lateral window approach[J]. Chin J Pathophysiology, 2013,29(6) : 1102-1113.
DOI URL |
|
[46] |
Peng W, Zhu SX, Li X, et al. miR-27b-3p suppressed osteogenic differentiation of maxillary sinus membrane stem cells by targeting Sp7[J]. Implant Dent, 2017,26(4):492-499.
DOI URL PMID |
[47] |
Zhu SX, Peng W, Li X, et al. miR-1827 inhibits osteogenic differentiation by targeting IGF1 in MSMSCs[J]. Sci Rep, 2017,7:46136.
DOI URL PMID |
[48] |
Fang Y, Fullwood MJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer[J]. Genomics Proteomics Bioinformatics, 2016,14(1):42-54.
DOI URL PMID |
[49] |
Peng W, Zhu SX, Wang J, et al. Lnc-NTF3-5 promotes osteogenic differentiation of maxillary sinus membrane stem cells via sponging miR-93-3p[J]. Clin Implant Dent Relat Res, 2018,20(2):110-121.
DOI URL PMID |
[50] |
Weng JQ, Peng W, Zhu SX, et al. Long noncoding RNA sponges miR-454 to promote osteogenic differentiation in maxillary sinus membrane stem cells[J]. Implant Dent, 2017,26(2):178-186.
DOI URL PMID |
[51] |
Qian DY, Yan GB, Bai B, et al. Differential circRNA expression profiles during the BMP2-induced osteogenic differentiation of MC3T3-E1 cells[J]. Biomedicine & Pharmacotherapy, 2017,90:492-499.
DOI URL PMID |
[52] |
Pamudurti NR, Bartok O, Jens M, et al. Translation of circRNAs[J]. Mol Cell, 2017,66(1):9-21.
DOI URL PMID |
[53] |
Peng W, Zhu SX, Chen JL, et al. Hsa_circRNA_33287 promotes the osteogenic differentiation of maxillary sinus membrane stem cells via miR-214-3p/Runx3[J]. Biomedicine & Pharmacotherapy, 2019,109:1709-1717.
DOI URL PMID |
[1] | CHEN Zetao,LIN Yixiong,YANG Jieting,HUANG Baoxin,CHEN Zhuofan. Research and development concept of barrier membranes based on “ immune microenvironment regulation” [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(8): 505-514. |
[2] | ZUO Xinhui,LI Jun,HAN Xiangzhen,LIU Xiaoyuan,HE Huiyu. Effects of hypoxia inducible factor-1α on osteogenic differentiation and angiogenesis related factors of bone marrow mesenchymal stem cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(7): 449-455. |
[3] | WANG Min,JIANG Nan,ZHU Songsong. A novel biomimetic micro/nano hierarchical interface of titanium enhances adhesion, proliferation and osteogenic differentiation of bone marrow mesenchymal cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(4): 226-233. |
[4] | LI Tianle,CHANG Xinnan,QIU Xutong,FU Di,ZHANG Tao. Effect of mechanical stimulation on the differentiation of stem cells in periodontal bone tissue engineering [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(4): 273-278. |
[5] | PAN Yingxiao,GUO Dawei,LI Xin,LU Shulai. Research progress on microRNAs connected with oral lichen planus [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(3): 206-210. |
[6] | CHEN Zece,LONG Qian,GUAN Xiaoyan,LIU Jianguo. Research progress on microRNA-21 in regulating osteoclast and osteogenic differentiation in orthodontic treatment [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(3): 211-216. |
[7] | SHI Weiwei,DING Yi,TIAN Weidong,GUO Shujuan. Exosomes derived from lipopolysaccharide-preconditioned dental folic cells regulate osteogenic differentiation of periodontal ligament cell in periodontitis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(2): 81-87. |
[8] | LIN Xi,LI Shaobing,DING Xianglong,XU Shulan. Application of the socket shield technique and its potential risks [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(2): 115-118. |
[9] | YAN Shanyu,MEI Hongxiang,LI Juan. Role of mesenchymal stem cells migration in bone injury repair [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(12): 854-858. |
[10] | RONG Mingdeng,ZHOU Tengfei. Clinical guidelines for maxillary sinus floor elevation with sinus membrane lesions [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(9): 551-561. |
[11] | QIN Qing,SONG Yang,LIU Jia,LI Qiang. Effects of casein kinase 2 interacting protein-1 on the osteogenic differentiation ability of human periodontal ligament stem cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(7): 421-426. |
[12] | WANG Zhiheng,ZUO Jie,WANG Mengqi,ZHU Shaojun,LIU Yishan. miR-214 inhibits the osteogenic differentiation of dental follicle cells in vitro [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(3): 146-152. |
[13] | LIAO Chunhui,LI Mingfei,YE Jinmei,PENG Wei,CHEN Songling. The regulatory mechanisms of IGF1 in the osteogenic differentiation of canine MSMSCs via BMP2-Smad1/5 signaling pathway [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(1): 16-23. |
[14] | ZHOU Jiaqi,SHU Linjing,XIONG Yi,ZHANG Yixin,XIANG Lin,WU Yingying. Study on the role of FoxO1 in the regulation of osteoblastic metabolism by 1,25(OH)2D3 in a high glucose environment [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(1): 24-29. |
[15] | REN Qingyuan,HE Wulin,WANG Qing,CHU Hongxing,LIN Haiyan. Effect of endoplasmic reticulum stress on the osteogenic differentiation of periodontal ligament cells under continuous static pressure [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(8): 485-489. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
This work is licensed under Creative Commons Attribution 3.0 License.