Journal of Prevention and Treatment for Stomatological Diseases ›› 2020, Vol. 28 ›› Issue (11): 733-738.doi: 10.12016/j.issn.2096-1456.2020.11.010

• Review Articles • Previous Articles     Next Articles

Role and mechanism of microRNAs in oral lichen planus

YANG Yijie(),GE Shuyun()   

  1. Shanghai Key Laboratory of Stomatology & Shanghai Research institute of Stomatology, shanghai 200011, China
  • Received:2019-12-15 Revised:2020-04-14 Online:2020-11-20 Published:2020-09-29
  • Contact: Shuyun GE;


Oral lichen planus (OLP) is a chronic inflammatory disease of the mucosa, some of which will develop into oral squamous cell carcinoma (OSCC). However, the pathogenesis of OLP remains unknown, but autoimmunity has been suggested as a potential cause. MicroRNAs (miRNAs), which are small noncoding RNAs, have been reported to be involved in a series of physiological events as well as the progression of diseases. The evidence indicates that miRNAs may be highly related to both the initiation and malignant progression of OLP. MiR-146a, miR-26b, miR-155, miR-19a and miR-125a are able to trigger OLP by regulating autoimmunity, and miR-137, miR-125b, and miR-27b may accelerate the carcinogenesis of OLP. These miRNAs may be potential targets for prognosis and treatment. Subsequent studies are expected to focus on a more comprehensive exploration of the role of miRNAs in OLP (including specific action pathways and other OLP-related miRNAs), as well as the potential for miRNAs to predict the treatment outcome of OLP. This review provides an updated summary of the roles of miRNAs in OLP to provide new ideas and approaches to OLP research.

Key words: oral lichen planus, precancerous condition, microRNA, autoimmunity, chronic inflammation, carcinogenesis, therapeutic targets

CLC Number: 

  • R781.5

Figure 1

Roles of miRNAs in oral lichen planus Foxp3: forked head transcription factor 3; TRAF6: forked head transcription factor 3; COX-2: cyclooxygenase-2; eNOS: endothelial nitric oxide synthase; TLR2: Toll-like receptor; IL: interleukin; TNF-α: tumor necrosis factor-α; IFN-γ: interferon-γ; Th1/Th2: helper T cells 1/helper T cells 2; CCL5: CC chemokine ligand 5; CCR5: chemokine receptor 5; T: T cells; PI3K: phosphatidylinositol 3-kinase; Akt: protein kinase B; mTOR: mammalian target of rapamycin; MMP-2: matrix metalloproteinase-2; PLK2: polo-like kinase 2; OLP: oral lichen planus"

[1] Brignardello-Petersen R . There is probably a low risk of experiencing a malignant transformation of oral lichen planus[J]. J Am Dent Assoc, 2020,151(3):e18.
doi: 10.1016/j.adaj.2019.09.016 pmid: 31882124
[2] Yamauchi M, Moriyama M, Hayashida JN , et al. Myeloid dendritic cells stimulated by thymic stromal lymphopoietin promote Th2 immune responses and the pathogenesis of oral lichen planus[J]. PLoS One, 2017,12(3):e0173017.
doi: 10.1371/journal.pone.0173017 pmid: 28278185
[3] Tan YQ, Li Q, Zhang J , et al. Increased circulating CXCR5(+) CD4(+) T follicular helper-like cells in oral lichen planus[J]. J Oral Pathol Med, 2017,46(9):803-809.
doi: 10.1111/jop.12550 pmid: 28122164
[4] Cao RY, Li Q, Miao Y , et al. The emerging role of MicroRNA-155 in cardiovascular diseases[J]. Biomed Res Int, 2016: 9869208.
[5] Chen C, Zhang LD, Huang HM , et al. Serum miR-126-3p level is down-regulated in sepsis patients[J]. Int J Clin Exp Pathol, 2018,11(5):2605-2612.
pmid: 31938374
[6] Xu GQ, Li LH, Wei JN , et al. Identification and profiling of microRNAs expressed in oral buccal mucosa squamous cell carcinoma of Chinese hamster[J]. Sci Rep, 2019,9(1):15616.
doi: 10.1038/s41598-019-52197-3 pmid: 31666604
[7] Yang JG, Sun YR, Chen GY , et al. Different expression of microRNA-146a in peripheral blood CD4(+) T cells and lesions of oral lichen planus[J]. Inflammation, 2016,39(2):860-866.
doi: 10.1007/s10753-016-0316-4 pmid: 26861135
[8] Wang J, Yang LJ, Wang LY , et al. Forkhead box p3 controls progression of oral lichen planus by regulating microRNA-146a[J]. J Cell Biochem, 2018,119(11):8862-8871.
doi: 10.1002/jcb.27139 pmid: 30125971
[9] Du J, Gao RF, Wang Y , et al. MicroRNA-26a/b have protective roles in oral lichen planus[J]. Cell Death Dis, 2020,11(1):15.
doi: 10.1038/s41419-019-2207-8 pmid: 31907356
[10] Danielsson K, Ebrahimi M, Wahlin YB , et al. Increased levels of COX-2 in oral lichen planus supports an autoimmune cause of the disease[J]. J Eur Acad Dermatol Venereol, 2012,26(11):1415-1419.
doi: 10.1111/j.1468-3083.2011.04306.x pmid: 22017396
[11] Liang ZJ, Tang FL . The potency of lncRNA MALAT1/miR-155/CTLA4 axis in altering Th1/Th2 balance of asthma[J]. Biosci Rep, 2020,40(2). DOI: 10.1042/BSR20190397.
doi: 10.1042/BSR20193286 pmid: 32043519
[12] Ma H, Wu YQ, Yang HM , et al. MicroRNAs in oral lichen planus and potential miRNA-mRNA pathogenesis with essential cytokines: a review[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2016,122(2):164-173.
doi: 10.1016/j.oooo.2016.03.018 pmid: 27282956
[13] Wang L, Wu W, Chen JJ , et al. MicroRNA Microarray-Based identification of involvement of miR-155 and miR-19a in development of oral lichen planus (OLP) by modulating Th1/Th2 balance via targeting eNOS and Toll-Like receptor 2 (TLR2)[J]. Med Sci Monit, 2018,24:3591-3603.
doi: 10.12659/MSM.907497 pmid: 29813046
[14] Navarathna DH, Lionakis MS, Roberts DD . Endothelial nitric oxide synthase limits host immunity to control disseminated Candida albicans infections in mice[J]. PLoS One, 2019,14(10):e0223919.
doi: 10.1371/journal.pone.0223919 pmid: 31671151
[15] Hu JY, Zhang J, Ma JZ , et al. MicroRNA-155-IFN-gamma feedback loop in CD4(+)T cells of erosive type oral lichen planus[J]. Sci Rep, 2015,5:16935.
doi: 10.1038/srep16935 pmid: 26594049
[16] Zhao X, Tang Y, Qu B , et al. MicroRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus[J]. Arthritis Rheum, 2010,62(11):3425-3435.
doi: 10.1002/art.27632 pmid: 20589685
[17] Hu JY, Zhang J, Cui JL , et al. Increasing CCL5/CCR5 on CD4+ T cells in peripheral blood of oral lichen planus[J]. Cytokine, 2013,62(1):141-145.
doi: 10.1016/j.cyto.2013.01.020 pmid: 23490419
[18] Wang J, Luo H, Xiao Y , et al. miR-125b inhibits keratinocyte proliferation and promotes keratinocyte apoptosis in oral lichen planus by targeting MMP-2 expression through PI3K/Akt/mTOR pathway[J]. Biomed Pharmacother, 2016,80:373-380.
doi: 10.1016/j.biopha.2016.02.043 pmid: 27133077
[19] Zhang J, Hua X, Qi N . MiR-27b suppresses epithelial-mesenchymal transition and chemoresistance in lung cancer by targeting Snail1[J]. Life Sci, 2019,117238.
[20] Ge X, Yuan L, Wei JZ , et al. Vitamin D/VDR signaling induces miR-27a/b expression in oral lichen planus[J]. Sci Rep, 2020,10(1):301.
doi: 10.1038/s41598-019-57288-9 pmid: 31942011
[21] Chen J, Du G, Chang Y , et al. Downregulated miR-27b promotes keratinocyte proliferation by targeting PLK2 in oral lichen planus[J]. J Oral Pathol Med, 2019,48(4):326-334.
doi: 10.1111/jop.12826 pmid: 30638284
[22] Shridhar K, Walia GK, Aggarwal A , et al. DNA methylation markers for oral pre-cancer progression: a critical review[J]. Oral Oncol, 2016,53:1-9.
doi: 10.1016/j.oraloncology.2015.11.012 pmid: 26690652
[23] Kashani E, Hadizadeh M, Chaleshi V , et al. The differential DNA hypermethylation patterns of microRNA-137 and microRNA-342 locus in early colorectal lesions and tumours[J]. Biomolecules, 2019,9(10):519.
doi: 10.3390/biom9100519
[24] Filippova EA, Loginov VI, Burdennyi AM , et al. Hypermethylated genes of microRNA in ovarian carcinoma: metastasis prediction marker systems[J]. Bull Exp Biol Med, 2019,167(1):79-83.
doi: 10.1007/s10517-019-04465-5 pmid: 31177462
[25] Huang Y, Zou Y, Zheng RJ , et al. MiR-137 inhibits cell proliferation in acute lymphoblastic leukemia by targeting JARID1B[J]. Eur J Haematol, 2019,103(3):215-224.
doi: 10.1111/ejh.13276 pmid: 31206203
[26] Allameh A, Moazeni-Roodi A, Harirchi I , et al. Promoter DNA methylation and mRNA expression level of p16 gene in oral squamous cell carcinoma: correlation with clinicopathological characteristics[J]. Pathol Oncol Res, 2019,25(4):1535-1543.
doi: 10.1007/s12253-018-0542-1 pmid: 30511108
[27] Aghbari S, Ai, Shakir OG , et al. Correlation between tissue expression of microRNA-137 and CD8 in oral lichen planus[J]. Clin Oral Investig, 2018,22(3):1463-1467.
doi: 10.1007/s00784-017-2252-6 pmid: 29034442
[28] Dang J, Bian YQ, Jy S , et al. MicroRNA-137 promoter methylation in oral lichen planus and oral squamous cell carcinoma[J]. J Oral Pathol Med, 2013,42(4):315-321.
doi: 10.1111/jop.12012
[29] Qadir MI , Faheem A. miRNA: a diagnostic and therapeutic Tool for pancreatic cancer[J]. Crit Rev Eukaryot Gene Expr, 2017,27(3):197-204.
doi: 10.1615/CritRevEukaryotGeneExpr.2017019494 pmid: 29199604
[30] Schmidt MF . miRNA targeting drugs: the next blockbusters?[J]. Methods Mol Biol, 2017,1517:3-22.
doi: 10.1007/978-1-4939-6563-2_1 pmid: 27924471
[31] Drury RE, O′Connor D, Pollard AJ. The Clinical application of microRNAs in infectious disease[J]. Front Immunol, 2017,8:1182.
doi: 10.3389/fimmu.2017.01182 pmid: 28993774
[32] Wong RR, Abd-Aziz N, Affendi S , et al. Role of microRNAs in antiviral responses to dengue infection[J]. J Biomed Sci, 2020,27(1):4.
doi: 10.1186/s12929-019-0614-x pmid: 31898495
[33] 林欣祤, 陈伟雄, 雷新元 , 等. 舌鳞癌化疗耐药相关线粒体微小RNA的筛选和鉴定[J]. 口腔疾病防治, 2019,27(7):417-422.
Lin XY, Chen WX, Lei XY , et al. Screening and identification of mitochondrial miRNAs related to chemotherapy resistance in tongue squamous cell carcinoma[J]. J Prev Treat Stomatol Dis, 2019,27(7):417-422.
[34] van der Ree MH, van der Meer AJ, van Nuenen AC , et al. Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma[J]. Aliment Pharmacol Ther, 2016,43(1):102-113.
doi: 10.1111/apt.13432 pmid: 26503793
[35] Beg MS, Brenner AJ, Sachdev J , et al. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors[J]. Invest New Drugs, 2017,35(2):180-188.
doi: 10.1007/s10637-016-0407-y pmid: 27917453
[1] WANG Ziying,CHEN Xiaotao. Research progress on the role of T helper cells 17 and interleukin 17 in oral mucosal diseases [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(3): 194-197.
[2] LIN Lin,WU Kaihui,WANG Wenmei. The mechanism of chloroquine/hydroxychloroquine and its application in stomatological diseases [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(3): 198-201.
[3] PAN Yingxiao,GUO Dawei,LI Xin,LU Shulai. Research progress on microRNAs connected with oral lichen planus [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(3): 206-210.
[4] CHEN Zece,LONG Qian,GUAN Xiaoyan,LIU Jianguo. Research progress on microRNA-21 in regulating osteoclast and osteogenic differentiation in orthodontic treatment [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(3): 211-216.
[5] MA Lingzhi,SHI Jiaozhuang,GE Wenbin,ZHANG Kun,YU Bing,LIU Yali. Effect of miR-21 on the proliferation and osteogenic differentiation of human periodontal ligament stem cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(9): 569-574.
[6] CHEN Songling,ZHU Shuangxi. The role of the membrane of the maxillary sinus in space osteogenesis under the sinus floor after elevation of the sinus floor [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(8): 477-486.
[7] TONG Ting,CHENG Lei,REN Biao. Research progress on the relationship between Candida albicans and oral potentially malignant disorders [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(12): 806-810.
[8] Pengyu HONG,Jiaxiong GAO,Dianri WANG,Zhangui TANG. White sponge nevus: a case report and literature review [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(7): 464-467.
[9] Xinyu LIN,Weixiong CHEN,Xinyuan LEI,Zhanpeng OU,song FAN,Jinsong LI. Screening and identification of mitochondrial miRNAs related to chemotherapy resistance in tongue squamous cell carcinoma [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(7): 417-422.
[10] LIN Lin,DUAN Ning,WANG Xiang,SONG Yuefeng,WANG Wenmei. Study on the correlation between common diseases of oral mucosa and psychological factors [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(4): 236-240.
[11] HUANG Lihuan,JIANG Yingtong,OUYANG Kexiong,WU Lihong,YANG Xuechao. Research progress on the role and mechanism of miR-155 in the development of oral squamous cell carcinoma [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(12): 809-812.
[12] Jun SHEN, Cao YIN, Xuan WANG, Huiming YE, Xiao JIANG. Aberrant histone modification in peripheral blood CD4+ T lymphocytes in oral lichen planus [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(6): 365-369.
[13] Xianhui LEI, Sen YANG. Clinical effect of combined treatment with Kangfuxin solution and dexamethasone on erosive oral lichen planus [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(6): 384-386.
[14] Jun SHEN, Wenxia MENG, Xiao JIANG, Xuan WANG, Cao YIN. An analysis of periodontal status in desquamative gingivitis and the correlative factors [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(3): 171-174.
[15] Xiao'an TAO, Bin CHENG. The present situation in treatment for oral lichen planus [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(3): 143-150.
Full text



[1] ZHU Song-song, HU Jing. The application of distraction osteogenesis in the temporomandibular joint ankylosis and secondary dentofacial deformities[J]. journal1, 2016, 24(1): 6 -10 .
[2] XU Jing. The influence of the impacted mandibular third molar extraction on the distal periodontal tissue of the mandibular second molar[J]. journal1, 2016, 24(1): 11 -14 .
[3] ZHONG Jiang-long, PAN Ji-yang, CHEN Wei-liang. The evaluation of Eagle syndrome treatment by surgery combined with antidepressant therapy[J]. journal1, 2016, 24(1): 26 -28 .
[4] CHEN Xi, SUN Qin-zhou. The study of colorimetric board of porcelain fused to metal restoration for moderate to severe dental fluorosis[J]. journal1, 2016, 24(1): 33 -36 .
[5] OUYANG Ke-xiong1, LIANG Jun, ZOU Rui, LI Zhi-qiang, BAI Zhi-bao, PIAO Zheng-guo, ZHAO Jian-Jiang.. Ion Torrent RNA-Seq detection and analysis of the long non-coding RNA in tongue squamous cell carcinoma[J]. journal1, 2016, 24(1): 15 -19 .
[6] YU Pei, XUE Jing, ZHANG Xiao-wei, ZHENG Cang-shang. The influence of the roughness of zirconia ceramic surface on microbial attachment[J]. journal1, 2016, 24(1): 20 -25 .
[7] LIU Fang. Clinical assessment of two fissure sealant techniques in children’s dental caries prevention[J]. journal1, 2016, 24(1): 44 -45 .
[8] . [J]. journal1, 2016, 24(1): 49 -52 .
[9] LU Jian-rong, BAN Hua-jie, WANG Dai-you, ZHOU Hui-hui, LONG Ru, QIN Shu-hua. Clinical observation of sternocleidomastoid muscle flaps combined with artificial biological membrane reparing the defects after parotidectomy[J]. journal1, 2016, 24(1): 29 -32 .
[10] LI Bin, HE Xiao-ning, GAO Yuan, HU Yu-ping. Clinical analysis of pain after two kinds of apical stop preparation[J]. journal1, 2016, 24(1): 40 -43 .
This work is licensed under a Creative Commons Attribution 3.0 License.