Journal of Prevention and Treatment for Stomatological Diseases ›› 2021, Vol. 29 ›› Issue (2): 110-114.doi: 10.12016/j.issn.2096-1456.2021.02.007

• Review Articles • Previous Articles     Next Articles

The effect of hypoglycemic drugs on bone metabolism and dental implantation in type 2 diabetes mellitus patients

SHI Shaojie(),LIU Xiangdong,SONG Yingliang()   

  1. State key Laboratory of military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi′an 710032, China
  • Received:2020-06-02 Revised:2020-07-14 Online:2021-02-20 Published:2020-12-21
  • Contact: Yingliang SONG E-mail:chenyewuxin@163.com;songyingliang@163.com
  • Supported by:
    grants from National Natural Science Foundation of China(81771107)

Abstract:

Patients with type 2 diabetes mellitus (T2DM) have a large demand for dental implants, but the pathologic state of T2DM patients could compromise the efficacy of implant treatment. Glycemic control can improve the success rate of implants in the T2DM population, but the early osseointegration of individuals still needs to be improved. Strengthening early osseointegration in patients with T2DM is one of the urgent problems for clinicians. The pharmacological mechanisms of hypoglycemic drugs on the market for bone metabolism are different and may require different interventions on the bone around the implant, but there is a lack of direct clinical evidence of the protective effect of hypoglycemic drugs. This review integrated the bone metabolic effect of drugs in clinical medical research and dental implant research. The aim was to provide medication guidance for T2DM patients who require implant surgery, and it is recommended to avoid the use of drugs with negative effects on bone as far as possible without violating the clinical medication guidelines, including SGLT-2 inhibitors and thiazolidinediones. Instead, they should choose glucose-lowering drugs that are beneficial to bone metabolism, such as insulin, metformin and GLP-1 receptor agonists. However, the comparative clinical effects of these drugs on periimplant bone need to be further elucidated. The researcher should select appropriate drugs (incretin drugs) to enhance the early osseointegration of implants in patients with T2DM.

Key words: type 2 diabetes mellitus, type 2 diabetes mellitus, blood glucose, blood glucose, hypoglycemic medication, hypoglycemic medication, insulin, insulin, metformin, metformin, glucagon-like peptide1, glucagon-like peptide1, bone metabolism, bone metabolism, dental implant, dental implant, osseointegration, osseointegration

CLC Number: 

  • R78
[1] Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas, 9th edition[J]. Diabetes Res Clin Pr, 2019,157:107843. doi: 10.1016/j.diabres.2019.107843.
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas, 9th edition[J]. Diabetes Res Clin Pr, 2019,157:107843. doi: 10.1016/j.diabres.2019.107843.
[2] 张力木, 林晓萍. C反应蛋白介导的牙周炎与全身系统性疾病相关机制研究进展[J]. 口腔疾病防治, 2020,28(3):184-188. doi: 10.12016/j.issn.2096-1456.2020.03.009.
张力木, 林晓萍. C反应蛋白介导的牙周炎与全身系统性疾病相关机制研究进展[J]. 口腔疾病防治, 2020,28(3):184-188. doi: 10.12016/j.issn.2096-1456.2020.03.009.
Zhang LM, Lin XP. Research progress on the mechanism of C-reactive protein mediated periodontitis and systemic diseases[J]. J Prev Treat Stomatol Dis, 2020,28(3):184-188. doi: 10.12016/j.issn.2096-1456.2020.03.009.
Zhang LM, Lin XP. Research progress on the mechanism of C-reactive protein mediated periodontitis and systemic diseases[J]. J Prev Treat Stomatol Dis, 2020,28(3):184-188. doi: 10.12016/j.issn.2096-1456.2020.03.009.
[3] Al Zahrani S, Al Mutairi AA. Crestal bone loss around submerged and non-submerged dental implants in individuals with type-2 diabetes mellitus: a 7-year prospective clinical study[J]. Med Prin Pract, 2019,28(1):75-81. doi: 10.1159/000495111.
Al Zahrani S, Al Mutairi AA. Crestal bone loss around submerged and non-submerged dental implants in individuals with type-2 diabetes mellitus: a 7-year prospective clinical study[J]. Med Prin Pract, 2019,28(1):75-81. doi: 10.1159/000495111.
[4] 原晶, 贾璞, 唐海, 等. 2型糖尿病患者血清25-羟维生素D水平及其与骨密度的关系[J]. 中华骨质疏松和骨矿盐疾病杂志, 2018,11(2):149-154. doi: 10.3969/j.issn.1674-2591.2018. 02.008.
原晶, 贾璞, 唐海, 等. 2型糖尿病患者血清25-羟维生素D水平及其与骨密度的关系[J]. 中华骨质疏松和骨矿盐疾病杂志, 2018,11(2):149-154. doi: 10.3969/j.issn.1674-2591.2018. 02.008.
Yuan J, Jia P, Tang H. Serum 25-hydroxy vitamin D level in type 2 diabetic patients and its relationship with bone mineral density[J]. Chin J Osteo Bone Mineral Res, 2018,11(2):149-154. doi: 10.3969/j.issn.1674-2591.2018.02.008.
Yuan J, Jia P, Tang H. Serum 25-hydroxy vitamin D level in type 2 diabetic patients and its relationship with bone mineral density[J]. Chin J Osteo Bone Mineral Res, 2018,11(2):149-154. doi: 10.3969/j.issn.1674-2591.2018.02.008.
[5] Chambrone L, Palma LF. Current status of dental implants survival and peri-implant bone loss in patients with uncontrolled type-2 diabetes mellitus[J]. Curr Opin Endocrinol Diabetes Obes, 2019,26(4):219-222. doi: 10.1097/MED.0000000000000482.
Chambrone L, Palma LF. Current status of dental implants survival and peri-implant bone loss in patients with uncontrolled type-2 diabetes mellitus[J]. Curr Opin Endocrinol Diabetes Obes, 2019,26(4):219-222. doi: 10.1097/MED.0000000000000482.
[6] 高海, 陈潇, 管东华, 等. 高糖对人骨髓间充质干细胞成骨分化的影响[J]. 口腔疾病防治, 2017,25(1):26-30. doi: 10.12016/j.issn.2096-1456.2017.01.005
高海, 陈潇, 管东华, 等. 高糖对人骨髓间充质干细胞成骨分化的影响[J]. 口腔疾病防治, 2017,25(1):26-30. doi: 10.12016/j.issn.2096-1456.2017.01.005
Gao H, Chen X, Guan DH, Effects of high glucose on osteogenic differentiation of hBMSC[J]. J Prev Treat Stomatol Dis, 2017,25(1):26-30. doi: 10.12016/j.issn.2096-1456.2017.01.005
Gao H, Chen X, Guan DH, Effects of high glucose on osteogenic differentiation of hBMSC[J]. J Prev Treat Stomatol Dis, 2017,25(1):26-30. doi: 10.12016/j.issn.2096-1456.2017.01.005
[7] Ormianer Z, Block J, Matalon S, et al. The effect of moderately controlled type 2 diabetes on dental implant survival and peri-implant bone loss: a long-term retrospective study[J]. Int J Oral Maxillofac Implants, 2018,33(2):389-394. doi: 10.11607/jomi.5838.
doi: 10.11607/jomi.5838 pmid: 29534127
Ormianer Z, Block J, Matalon S, et al. The effect of moderately controlled type 2 diabetes on dental implant survival and peri-implant bone loss: a long-term retrospective study[J]. Int J Oral Maxillofac Implants, 2018,33(2):389-394. doi: 10.11607/jomi.5838.
doi: 10.11607/jomi.5838 pmid: 29534127
[8] Nilsson AG, Sundh D, Johansson L, et al. Type 2 diabetes mellitus is associated with better bone microarchitecture but lower bone material strength and poorer physical function in elderly women: a population-based study[J]. J Bone Miner Res, 2017,32(5):1062-1071. doi: 10.1002/jbmr.3057.
Nilsson AG, Sundh D, Johansson L, et al. Type 2 diabetes mellitus is associated with better bone microarchitecture but lower bone material strength and poorer physical function in elderly women: a population-based study[J]. J Bone Miner Res, 2017,32(5):1062-1071. doi: 10.1002/jbmr.3057.
[9] Vilaca T, Walsh J, Eastell R. Discordant pattern of peripheral fractures in diabetes: a meta-analysis on the risk of wrist and ankle fractures[J]. Osteoporosis Int, 2019,30(1):135-143. doi: 10.1007/s00198-018-4717-0.
Vilaca T, Walsh J, Eastell R. Discordant pattern of peripheral fractures in diabetes: a meta-analysis on the risk of wrist and ankle fractures[J]. Osteoporosis Int, 2019,30(1):135-143. doi: 10.1007/s00198-018-4717-0.
[10] Miyake H, Kanazawa I, Sugimoto T. Association of bone mineral density, bone turnover markers, and vertebral fractures with all-cause mortality in type 2 diabetes mellitus[J]. Calcified Tissue Int, 2018,102(1):1-13. doi: 10.1007/s00223-017-0324-x.
Miyake H, Kanazawa I, Sugimoto T. Association of bone mineral density, bone turnover markers, and vertebral fractures with all-cause mortality in type 2 diabetes mellitus[J]. Calcified Tissue Int, 2018,102(1):1-13. doi: 10.1007/s00223-017-0324-x.
[11] American Diabetes Association. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2020[J]. Diabetes Care, 2020,43(Suppl 1):S98-S110. doi: 10.2337/dc20-S009.
pmid: 31862752
American Diabetes Association. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2020[J]. Diabetes Care, 2020,43(Suppl 1):S98-S110. doi: 10.2337/dc20-S009.
pmid: 31862752
[12] Hidayat K, Du X, Wu MJ, et al. The use of metformin, insulin, sulphonylureas, and thiazolidinediones and the risk of fracture: systematic review and meta-analysis of observational studies[J]. Obes Rev, 2019,20(10):1494-1503. doi: 10.1111/obr.12885.
pmid: 31250977
Hidayat K, Du X, Wu MJ, et al. The use of metformin, insulin, sulphonylureas, and thiazolidinediones and the risk of fracture: systematic review and meta-analysis of observational studies[J]. Obes Rev, 2019,20(10):1494-1503. doi: 10.1111/obr.12885.
pmid: 31250977
[13] Adil M, Khan RA, Kalam A, et al. Effect of anti-diabetic drugs on bone metabolism: evidence from preclinical and clinical studies[J]. Pharmacol Rep, 2017,69(6):1328-1340. doi: 10.1016/j. pharep.2017.05.008.
Adil M, Khan RA, Kalam A, et al. Effect of anti-diabetic drugs on bone metabolism: evidence from preclinical and clinical studies[J]. Pharmacol Rep, 2017,69(6):1328-1340. doi: 10.1016/j. pharep.2017.05.008.
[14] Schwartz AV, Chen H, Ambrosius WT, et al. Effects of tzd use and discontinuation on fracture rates in accord bone study[J]. J Clin Endocrinol Metab, 2015,100(11):4059-4066. doi: 10.1210/jc.2015-1215.
Schwartz AV, Chen H, Ambrosius WT, et al. Effects of tzd use and discontinuation on fracture rates in accord bone study[J]. J Clin Endocrinol Metab, 2015,100(11):4059-4066. doi: 10.1210/jc.2015-1215.
[15] Billington EO, Grey A, Bolland MJ. The effect of thiazolidinediones on bone mineral density and bone turnover: systematic review and meta-analysis[J]. Diabetologia, 2015,58(10):2238-2246. doi: 10.1007/s00125-015-3660-2.
Billington EO, Grey A, Bolland MJ. The effect of thiazolidinediones on bone mineral density and bone turnover: systematic review and meta-analysis[J]. Diabetologia, 2015,58(10):2238-2246. doi: 10.1007/s00125-015-3660-2.
[16] Gamble JM, Donnan JR, Chibrikov E, et al. The risk of fragility fractures in new users of dipeptidyl peptidase-4 inhibitors compared to sulfonylureas and other anti-diabetic drugs: a cohort study[J]. Diabetes Res Clin Pract, 2018,136:159-167. doi: 10. 1016/j.diabres.2017.12.008.
Gamble JM, Donnan JR, Chibrikov E, et al. The risk of fragility fractures in new users of dipeptidyl peptidase-4 inhibitors compared to sulfonylureas and other anti-diabetic drugs: a cohort study[J]. Diabetes Res Clin Pract, 2018,136:159-167. doi: 10. 1016/j.diabres.2017.12.008.
[17] Zhang Z, Cao Y, Tao Y, et al. Sulfonylurea and fracture risk in patients with type 2 diabetes mellitus: a meta-analysis[J]. Diabetes Res Clin Pr, 2020,159:107990. doi: 10. 1016/j.diabres.2019.107990.
Zhang Z, Cao Y, Tao Y, et al. Sulfonylurea and fracture risk in patients with type 2 diabetes mellitus: a meta-analysis[J]. Diabetes Res Clin Pr, 2020,159:107990. doi: 10. 1016/j.diabres.2019.107990.
[18] Blevins TC, Farooki A. Bone effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in patients with type 2 diabetes mellitus[J]. Postgrad Med, 2017,129(1):159-168. doi: 10.1080/00325481.2017.1256747.
pmid: 27894216
Blevins TC, Farooki A. Bone effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in patients with type 2 diabetes mellitus[J]. Postgrad Med, 2017,129(1):159-168. doi: 10.1080/00325481.2017.1256747.
pmid: 27894216
[19] Raj J, Venkatachalam S, Shekoba M, et al. Conventional antidiabetic agents and bone health: a pilot case-control study[J]. Perspectives in Clinical Research, 2019,10(4):177. doi: 10.4103/picr.PICR_125_18.
pmid: 31649868
Raj J, Venkatachalam S, Shekoba M, et al. Conventional antidiabetic agents and bone health: a pilot case-control study[J]. Perspectives in Clinical Research, 2019,10(4):177. doi: 10.4103/picr.PICR_125_18.
pmid: 31649868
[20] Ruppert K, Cauley J, Lian Y, et al. The effect of insulin on bone mineral density among women with type 2 diabetes: a swan pharmacoepidemiology study[J]. Osteoporosis Int, 2018,29(2):347-354. doi: 10.1007/s00198-017-4276-9.
Ruppert K, Cauley J, Lian Y, et al. The effect of insulin on bone mineral density among women with type 2 diabetes: a swan pharmacoepidemiology study[J]. Osteoporosis Int, 2018,29(2):347-354. doi: 10.1007/s00198-017-4276-9.
[21] Zhang YS, Weng WY, Xie BC, et al. Glucagon-like peptide-1 receptor agonists and fracture risk: a network meta-analysis of randomized clinical trials[J]. Osteoporos Int, 2018,29(12):2639-2644. doi: 10.1007/s00198-018-4649-8.
Zhang YS, Weng WY, Xie BC, et al. Glucagon-like peptide-1 receptor agonists and fracture risk: a network meta-analysis of randomized clinical trials[J]. Osteoporos Int, 2018,29(12):2639-2644. doi: 10.1007/s00198-018-4649-8.
[22] 汤小斌, 潘春艳, 楼晔. 利拉鲁肽对2型糖尿病大鼠骨代谢及Wnt通路的影响[J]. 中华内分泌外科杂志, 2019(06):466-470. doi: 10.3760/cma.j.issn.1674-6090.2019.06.006
汤小斌, 潘春艳, 楼晔. 利拉鲁肽对2型糖尿病大鼠骨代谢及Wnt通路的影响[J]. 中华内分泌外科杂志, 2019(06):466-470. doi: 10.3760/cma.j.issn.1674-6090.2019.06.006
Tang XB, Pan CY, Lou Y. Effects of liraglutide on bone metabolism and Wnt pathway in type 2 diabetic rats with osteoporosis[J]. J Endocrine Sur, 2019(06):466-470. doi: 10.3760/cma.j.issn.1674-6090.2019.06.006
Tang XB, Pan CY, Lou Y. Effects of liraglutide on bone metabolism and Wnt pathway in type 2 diabetic rats with osteoporosis[J]. J Endocrine Sur, 2019(06):466-470. doi: 10.3760/cma.j.issn.1674-6090.2019.06.006
[23] Driessen JH, de Vries F, van Onzenoort H, et al. The use of incretins and fractures - a meta-analysis on population-based real life data[J]. Br J Clin Pharmacol, 2017,83(4):923-926. doi: 10.1111/bcp.13167.
doi: 10.1111/bcp.13167 pmid: 27780288
Driessen JH, de Vries F, van Onzenoort H, et al. The use of incretins and fractures - a meta-analysis on population-based real life data[J]. Br J Clin Pharmacol, 2017,83(4):923-926. doi: 10.1111/bcp.13167.
doi: 10.1111/bcp.13167 pmid: 27780288
[24] Dytfeld J, Michalak M. Type 2 diabetes and risk of low-energy fractures in postmenopausal women: meta-analysis of observational studies[J]. Aging Clin Exp Res, 2017,29(2):301-309. doi: 10.1007/s40520-016-0562-1.
doi: 10.1007/s40520-016-0562-1 pmid: 27072353
Dytfeld J, Michalak M. Type 2 diabetes and risk of low-energy fractures in postmenopausal women: meta-analysis of observational studies[J]. Aging Clin Exp Res, 2017,29(2):301-309. doi: 10.1007/s40520-016-0562-1.
doi: 10.1007/s40520-016-0562-1 pmid: 27072353
[25] Cortet B, Lucas S, Legroux-Gerot I, et al. Bone disorders associated with diabetes mellitus and its treatments[J]. Joint Bone Spine, 2019,86(3):315-320. doi: 10. 1016/j.jbspin.2018.08.002.
pmid: 30098423
Cortet B, Lucas S, Legroux-Gerot I, et al. Bone disorders associated with diabetes mellitus and its treatments[J]. Joint Bone Spine, 2019,86(3):315-320. doi: 10. 1016/j.jbspin.2018.08.002.
pmid: 30098423
[26] Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin[J]. Diabetologia, 2017,60(9):1577-1585. doi: 10.1007/s00125-017-4342-z.
doi: 10.1007/s00125-017-4342-z pmid: 28776086
Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin[J]. Diabetologia, 2017,60(9):1577-1585. doi: 10.1007/s00125-017-4342-z.
doi: 10.1007/s00125-017-4342-z pmid: 28776086
[27] Jiating L, Buyun J, Yinchang Z. Role of metformin on osteoblast differentiation in type 2 diabetes[J]. Biomed Res Int, 2019,2019:9203934. doi: 10.1155/2019/9203934.
Jiating L, Buyun J, Yinchang Z. Role of metformin on osteoblast differentiation in type 2 diabetes[J]. Biomed Res Int, 2019,2019:9203934. doi: 10.1155/2019/9203934.
[28] Inouye KA, Bisch FC, Elsalanty ME, et al. Effect of metformin on periimplant wound healing in a rat model of type 2 diabetes[J]. Implant Dent, 2014,23(3):319-327. doi: 10.1097/ID.0000000000000069.
pmid: 24776941
Inouye KA, Bisch FC, Elsalanty ME, et al. Effect of metformin on periimplant wound healing in a rat model of type 2 diabetes[J]. Implant Dent, 2014,23(3):319-327. doi: 10.1097/ID.0000000000000069.
pmid: 24776941
[29] Serrão CR, Bastos MF, Cruz DF, et al. Role of metformin in reversing the negative impact of hyperglycemia on bone healing around implants inserted in type 2 diabetic rats[J]. Int J Oral Maxillofac Implants, 2017,32(3):547-554. doi: 10.11607/jomi.5754.
pmid: 28494038
Serrão CR, Bastos MF, Cruz DF, et al. Role of metformin in reversing the negative impact of hyperglycemia on bone healing around implants inserted in type 2 diabetic rats[J]. Int J Oral Maxillofac Implants, 2017,32(3):547-554. doi: 10.11607/jomi.5754.
pmid: 28494038
[30] Bastos MF, Serrão CR, Miranda TS, et al. Effects of metformin on bone healing around titanium implants inserted in non-diabetic rats[J]. Clin Oral Implan Res, 2017,28(10):e146-e150. doi: 10.1111/clr.12960.
Bastos MF, Serrão CR, Miranda TS, et al. Effects of metformin on bone healing around titanium implants inserted in non-diabetic rats[J]. Clin Oral Implan Res, 2017,28(10):e146-e150. doi: 10.1111/clr.12960.
[31] Bortolin RH, Freire NF, Arcaro CA, et al. Anabolic effect of insulin therapy on the bone: osteoprotegerin and osteocalcin up-regulation in streptozotocin-induced diabetic rats[J]. Basic Clin Pharmacol Toxicol, 2017,120(3):227-234. doi: 10.1111/bcpt.12672.
Bortolin RH, Freire NF, Arcaro CA, et al. Anabolic effect of insulin therapy on the bone: osteoprotegerin and osteocalcin up-regulation in streptozotocin-induced diabetic rats[J]. Basic Clin Pharmacol Toxicol, 2017,120(3):227-234. doi: 10.1111/bcpt.12672.
[32] Paglia DN, Wey A, Breitbart EA, et al. Effects of local insulin delivery on subperiosteal angiogenesis and mineralized tissue formation during fracture healing[J]. J Orthop Res, 2013,31(5):783-791. doi: 10.1002/jor.22288.
pmid: 23238777
Paglia DN, Wey A, Breitbart EA, et al. Effects of local insulin delivery on subperiosteal angiogenesis and mineralized tissue formation during fracture healing[J]. J Orthop Res, 2013,31(5):783-791. doi: 10.1002/jor.22288.
pmid: 23238777
[33] Wang X, Qi F, Xing H, et al. Uniform-sized insulin-loaded plga microspheres for improved early-stage peri-implant bone regeneration[J]. Drug Deliv, 2019,26(1):1178-1190. doi: 10.1080/10717544.2019.1682719.
doi: 10.1080/10717544.2019.1682719 pmid: 31738084
Wang X, Qi F, Xing H, et al. Uniform-sized insulin-loaded plga microspheres for improved early-stage peri-implant bone regeneration[J]. Drug Deliv, 2019,26(1):1178-1190. doi: 10.1080/10717544.2019.1682719.
doi: 10.1080/10717544.2019.1682719 pmid: 31738084
[34] Wu Y, Yu T, Yang X, et al. Vitamin d3 and insulin combined treatment promotes titanium implant osseointegration in diabetes mellitus rats[J]. Bone, 2013,52(1):1-8. doi: 10. 1016/j.bone.2012.09.005.
doi: 10.1016/j.bone.2012.09.005 pmid: 22985888
Wu Y, Yu T, Yang X, et al. Vitamin d3 and insulin combined treatment promotes titanium implant osseointegration in diabetes mellitus rats[J]. Bone, 2013,52(1):1-8. doi: 10. 1016/j.bone.2012.09.005.
doi: 10.1016/j.bone.2012.09.005 pmid: 22985888
[35] Proust ML. How the gut affects bone metabolism[J]. Joint Bone Spine, 2017,84(5):515-519. doi: 10. 1016/j.jbspin. 2016. 12.015.
doi: 10.1016/j.jbspin.2016.12.015 pmid: 28062385
Proust ML. How the gut affects bone metabolism[J]. Joint Bone Spine, 2017,84(5):515-519. doi: 10. 1016/j.jbspin. 2016. 12.015.
doi: 10.1016/j.jbspin.2016.12.015 pmid: 28062385
[36] Schiellerup SP, Skov-Jeppesen K, Windeløv JA, et al. Gut hormones and their effect on bone metabolism. Potential drug therapies in future osteoporosis treatment[J]. Front Endocrinol, 2019,10:75. doi: 10.3389/fendo.2019.00075.
Schiellerup SP, Skov-Jeppesen K, Windeløv JA, et al. Gut hormones and their effect on bone metabolism. Potential drug therapies in future osteoporosis treatment[J]. Front Endocrinol, 2019,10:75. doi: 10.3389/fendo.2019.00075.
[37] Ruan B, Zhu Z, Yan Z, et al. Azoramide, a novel regulator, favors adipogenesis against osteogenesis through inhibiting the glp-1 receptor-pka-β-catenin pathway[J]. Stem Cell Res Ther, 2018,9(1). doi: 10.1186/s13287-018-0771-y.
pmid: 30526663
Ruan B, Zhu Z, Yan Z, et al. Azoramide, a novel regulator, favors adipogenesis against osteogenesis through inhibiting the glp-1 receptor-pka-β-catenin pathway[J]. Stem Cell Res Ther, 2018,9(1). doi: 10.1186/s13287-018-0771-y.
pmid: 30526663
[38] Mabilleau G, Pereira M, Chenu C. Novel skeletal effects of glucagon-like peptide-1 (glp-1) receptor agonists[J]. J Endocrinol, 2018,236(1):R29-R42. doi: 10.1530/JOE-17-0278.
Mabilleau G, Pereira M, Chenu C. Novel skeletal effects of glucagon-like peptide-1 (glp-1) receptor agonists[J]. J Endocrinol, 2018,236(1):R29-R42. doi: 10.1530/JOE-17-0278.
[39] Ma X, Meng J, Jia M, et al. Exendin-4, a glucagon-like peptide-1 receptor agonist, prevents osteopenia by promoting bone formation and suppressing bone resorption in aged ovariectomized rats[J]. J Bone Miner Res, 2013,28(7):1641-1652. doi: 10.1002/jbmr.1898.
doi: 10.1002/jbmr.1898 pmid: 23427056
Ma X, Meng J, Jia M, et al. Exendin-4, a glucagon-like peptide-1 receptor agonist, prevents osteopenia by promoting bone formation and suppressing bone resorption in aged ovariectomized rats[J]. J Bone Miner Res, 2013,28(7):1641-1652. doi: 10.1002/jbmr.1898.
doi: 10.1002/jbmr.1898 pmid: 23427056
[40] Deng B, Zhu W, Duan Y, et al. Exendin4 promotes osteogenic differentiation of adiposederived stem cells and facilitates bone repair[J]. Mol Med Rep, 2019,20(6):4933-4942. doi: 10.3892/mmr.2019.10764.
pmid: 31661134
Deng B, Zhu W, Duan Y, et al. Exendin4 promotes osteogenic differentiation of adiposederived stem cells and facilitates bone repair[J]. Mol Med Rep, 2019,20(6):4933-4942. doi: 10.3892/mmr.2019.10764.
pmid: 31661134
[41] Zhou W, Liu Z, Yao J, et al. The effects of exenatide microsphere on serum bgp and alp levels in zdf rats after implantation[J]. Clin Implant Dent Relat Res, 2015,17(4):765-770. doi: 10.1111/cid.12184.
Zhou W, Liu Z, Yao J, et al. The effects of exenatide microsphere on serum bgp and alp levels in zdf rats after implantation[J]. Clin Implant Dent Relat Res, 2015,17(4):765-770. doi: 10.1111/cid.12184.
[42] Liu Z, Zhou W, Tangl S, et al. Potential mechanism for osseointegration of dental implants in zucker diabetic fatty rats[J]. Br J Oral Maxillofac Surg, 2015,53(8):748-753. doi: 10. 1016/j.bjoms.2015.05.023.
doi: 10.1016/j.bjoms.2015.05.023 pmid: 26093969
Liu Z, Zhou W, Tangl S, et al. Potential mechanism for osseointegration of dental implants in zucker diabetic fatty rats[J]. Br J Oral Maxillofac Surg, 2015,53(8):748-753. doi: 10. 1016/j.bjoms.2015.05.023.
doi: 10.1016/j.bjoms.2015.05.023 pmid: 26093969
[1] WANG Chengyu,FAN Yawei,WANG Jue. Comparison of platelet rich fibrin and acellular dermal matrix in repairing rabbits′ oral mucosal defects [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(7): 442-448.
[2] WANG Anxun. Diagnosis and treatment of benign condylar hyperplasia [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(6): 361-367.
[3] ZHOU Anqi,LIU Jiayi,JIA Yinan,XIANG Lin. Research progress on the Hippo-YAP signaling pathway mediated osteoimmunology in modulating implant osseointegration [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(5): 334-339.
[4] DENG Yujie,YANG Xiaobin,CHEN Hao,LAI Jinhuan,ZHOU Miao. 1 429 cases treated with nitrous oxide inhalation sedation in dental clinic: a retrospective study [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(4): 249-253.
[5] YUAN Quan. Dental implant treatment for patients with chronic kidney disease [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(3): 145-150.
[6] LI Jiesen,LIN Zhenxiang,WU Dong,ZHENG Zhiqiang,LIN Jie. Finite element analysis of the stress distribution of dental implant crowns with different all-ceramic materials and thicknesses [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(3): 166-170.
[7] ZHAO Yaqin,LIU Aipeng,CEN Feng,YANG Kaiwen,LI Yanfang,DENG Wenzheng. Research on the accuracy of dynamic real-time navigation and digital guide navigation implanting techniques [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(3): 178-183.
[8] LIN Xi,LI Shaobing,DING Xianglong,XU Shulan. Application of the socket shield technique and its potential risks [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(2): 115-118.
[9] ZHANG Yameng,ZHANG Huiyuan,RUAN Shihong,CHEN Xiaochun,GAN Xueqi,YU Haiyang. The level of antimicrobial peptides in gingival crevicular fluid and its correlation with periodontal clinical indexes in elderly patients with type 2 diabetic periodontitis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(11): 746-751.
[10] WANG Yanlin,SUN Xiaojun. A study of the maxillary sinus lateral wall thickness using cone-beam CT [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(11): 761-765.
[11] JIN Zhuohua,XIE Lili,LI Yuyang,JIANG Jiayang,OU Yanzhen,MENG Weiyan. Research progress on the relationship between occlusal overload and peri-implantitis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(11): 782-786.
[12] XU Jing. The significance and parameter standards of the implant primary stability [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(1): 2-10.
[13] TANG Yufei,ZHOU Anqi,YU Hui,LIU Zhenzhen,ZHANG Xinyuan,WANG Bin,ZHANG Kaiwen,XIANG Lin. Differences in implant osseointegration in the jaw and femur in animal experiments [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(1): 57-60.
[14] CHEN Songling,ZHU Shuangxi. The role of the membrane of the maxillary sinus in space osteogenesis under the sinus floor after elevation of the sinus floor [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(8): 477-486.
[15] MAN Yi,ZHOU Nan,YANG Xingmei. Clinical application and new progress of dynamic navigation system in the field of oral implantology [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(6): 341-348.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHU Song-song, HU Jing. The application of distraction osteogenesis in the temporomandibular joint ankylosis and secondary dentofacial deformities[J]. journal1, 2016, 24(1): 6 -10 .
[2] XU Jing. The influence of the impacted mandibular third molar extraction on the distal periodontal tissue of the mandibular second molar[J]. journal1, 2016, 24(1): 11 -14 .
[3] ZHONG Jiang-long, PAN Ji-yang, CHEN Wei-liang. The evaluation of Eagle syndrome treatment by surgery combined with antidepressant therapy[J]. journal1, 2016, 24(1): 26 -28 .
[4] CHEN Xi, SUN Qin-zhou. The study of colorimetric board of porcelain fused to metal restoration for moderate to severe dental fluorosis[J]. journal1, 2016, 24(1): 33 -36 .
[5] OUYANG Ke-xiong1, LIANG Jun, ZOU Rui, LI Zhi-qiang, BAI Zhi-bao, PIAO Zheng-guo, ZHAO Jian-Jiang.. Ion Torrent RNA-Seq detection and analysis of the long non-coding RNA in tongue squamous cell carcinoma[J]. journal1, 2016, 24(1): 15 -19 .
[6] YU Pei, XUE Jing, ZHANG Xiao-wei, ZHENG Cang-shang. The influence of the roughness of zirconia ceramic surface on microbial attachment[J]. journal1, 2016, 24(1): 20 -25 .
[7] LIU Fang. Clinical assessment of two fissure sealant techniques in children’s dental caries prevention[J]. journal1, 2016, 24(1): 44 -45 .
[8] . [J]. journal1, 2016, 24(1): 49 -52 .
[9] LU Jian-rong, BAN Hua-jie, WANG Dai-you, ZHOU Hui-hui, LONG Ru, QIN Shu-hua. Clinical observation of sternocleidomastoid muscle flaps combined with artificial biological membrane reparing the defects after parotidectomy[J]. journal1, 2016, 24(1): 29 -32 .
[10] LI Bin, HE Xiao-ning, GAO Yuan, HU Yu-ping. Clinical analysis of pain after two kinds of apical stop preparation[J]. journal1, 2016, 24(1): 40 -43 .
This work is licensed under a Creative Commons Attribution 3.0 License.