Journal of Prevention and Treatment for Stomatological Diseases ›› 2021, Vol. 29 ›› Issue (4): 273-278.doi: 10.12016/j.issn.2096-1456.2021.04.009

• Review Articles • Previous Articles     Next Articles

Effect of mechanical stimulation on the differentiation of stem cells in periodontal bone tissue engineering

LI Tianle(),CHANG Xinnan,QIU Xutong,FU Di,ZHANG Tao()   

  1. State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2020-05-22 Revised:2020-10-14 Online:2021-04-20 Published:2021-02-26
  • Contact: Tao ZHANG E-mail:786864569@qq.com;taozhang@scu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(81800947);Sichuan Science and Technology Program(2020YFS0176);Postdoctoral Science Foundation of China(2018M640930)

Abstract:

Currently, cell transplantation in combination with scaffold materials are one of the main strategies in periodontal bone tissue engineering. In periodontal bone tissues, the stiffness and spatial structure of tissues such as alveolar bone and cementum differ, and the difference in mechanical properties of scaffolds also has disparate effects on the proliferation and differentiation of stem cells. Accumulating evidence shows that mechanical stimulating factors such as matrix stiffness and scaffold topography modulate biological behaviors of various seeding cells, including adipose-derived stem cells and periodontal ligament stem cells. A hard matrix can promote cytoskeletal stretching of stem cells, leading to nuclear translocation of Yes-associated protein (YAP) and promoting osteogenic differentiation by upregulating alkaline phosphatase (ALP) and osteocalcin (OCN) via the Wnt/β-catenin pathway. The topologic structure of scaffolds can affect cell adhesion and cytoskeletal remodeling, increase the hardness of cells and promote the osteogenic differentiation of stem cells. In this paper, the effects of mechanical stimulation on the differentiation of stem cells in periodontal bone tissue engineering are reviewed.

Key words: periodontal bone tissue engineering, odontogenic stem cells, scaffold material, mechanical stimuli, matrix stiffness, topography, biological behavior, osteogenic differentiation

CLC Number: 

  • R78
[1] Wang ZS, Feng ZH, Wu GF, et al. The use of platelet-rich fibrin combined with periodontal ligament and jaw bone mesenchymal stem cell sheets for periodontal tissue engineering[J]. Sci Rep, 2016,6:28126. doi: 10.1038/srep28126.
doi: 10.1038/srep28126 pmid: 27324079
[2] Hao Z, Song Z, Huang J, et al. The scaffold microenvironment for stem cell based bone tissue engineering[J]. Biomater Sci, 2017,5(8):1382-1392. doi: 10.1039/c7bm00146k.
pmid: 28447671
[3] Rahmati M, Pennisi CP, Mobasheri A, et al. Bioengineered scaffolds for stem cell applications in tissue engineering and regenerative medicine[J]. Adv Exp Med Biol, 2018,1107:73-89. doi: 10.1007/5584_2018_215.
doi: 10.1007/5584_2018_215 pmid: 29767291
[4] Bai M, Xie J, Liu X, et al. Microenvironmental stiffness regulates dental papilla cell differentiation: implications for the importance of fibronectin-paxillin-beta-catenin axis[J]. ACS Appl Mater Interfaces, 2018,10(32):26917-26927. doi: 10.1021/acsami.8b08450.
doi: 10.1021/acsami.8b08450 pmid: 30004214
[5] Zhou C, Wang Q, Zhang D, et al. Compliant substratum modulates vinculin expression in focal adhesion plaques in skeletal cells[J]. Int J Oral Sci, 2019,11(2):18. doi: 10.1038/s41368-019-0052-3.
doi: 10.1038/s41368-019-0052-3 pmid: 31152146
[6] Zhou C, Zhang D, Zou J, et al. Substrate compliance directs the osteogenic lineages of stem cells from the human apical papilla via the processes of mechanosensing and mechanotransduction[J]. ACS Appl Mater Interfaces, 2019,11(29):26448-26459. doi: 10.1021/acsami.9b07147.
pmid: 31251564
[7] Xie J, Zhang D, Zhou C, et al. Substrate elasticity regulates adipose-derived stromal cell differentiation towards osteogenesis and adipogenesis through beta-catenin transduction[J]. Acta Biomater, 2018,79:83-95. doi: 10.1016/j.actbio.2018.08.018.
doi: 10.1016/j.actbio.2018.08.018 pmid: 30134207
[8] Beijer NRM, Nauryzgaliyeva ZM, Arteaga EM, et al. Dynamic adaptation of mesenchymal stem cell physiology upon exposure to surface micropatterns[J]. Sci Rep, 2019,9(1):9099. doi: 10.1038/s41598-019-45284-y.
pmid: 31235713
[9] Passariello C, Di Nardo D, Testarelli L. Inflammatory periimplant diseases and the periodontal connection question[J]. Eur J Dent, 2019,13(1):119-123. doi: 10.1055/s-0039-1688525.
doi: 10.1055/s-0039-1688525 pmid: 31234222
[10] Liu J, Li Q, Liu S, et al. Periodontal ligament stem cells in the periodontitis microenvironment are sensitive to static mechanical strain[J]. Stem Cells Int, 2017: 1380851. doi: 10.1155/2017/1380851.
[11] Zhang T, Lin S, Shao X, et al. Regulating osteogenesis and adipogenesis in adipose-derived stem cells by controlling underlying substrate stiffness[J]. J Cell Physiol, 2018,233(4):3418-3428. doi: 10.1002/jcp.26193.
doi: 10.1002/jcp.26193 pmid: 28926111
[12] Zhang T, Gong T, Xie J, et al. Softening substrates promote chondrocytes phenotype via RhoA/ROCK pathway[J]. ACS Appl Mater Interfaces, 2016,8(35):22884-22891. doi: 10.1021/acsami. 6b07097.
doi: 10.1021/acsami.6b07097 pmid: 27534990
[13] Zhang T, Lin S, Shao X, et al. Effect of matrix stiffness on osteoblast functionalization[J]. Cell Prolif, 2017,50(3):e12338. doi: 10.1111/cpr.12338.
[14] Tian T, Zhang T, Lin Y, et al. Vascularization in craniofacial bone tissue engineering[J]. J Dent Res, 2018,97(9):969-976. doi: 10.1177/0022034518767120.
doi: 10.1177/0022034518767120 pmid: 29608865
[15] d′Angelo M, Benedetti E, Tupone MG, et al. The Role of stiffness in cell reprogramming: a potential role for biomaterials in inducing tissue regeneration[J]. Cells, 2019,8(9):1036. doi: 10.3390/cells8091036.
[16] Leight JL, Wozniak MA, Chen S, et al. Matrix rigidity regulates a switch between TGF-beta1-induced apoptosis and epithelial-mesenchymal transition[J]. Mol Biol Cell, 2012,23(5):781-791. doi: 10.1091/mbc.E11-06-0537.
doi: 10.1091/mbc.E11-06-0537 pmid: 22238361
[17] Tse JR, Engler AJ. Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate[J]. PLoS One, 2011,6(1):e15978. doi: 10.1371/journal.pone.0015978.
doi: 10.1371/journal.pone.0015978 pmid: 21246050
[18] Biggs MJP, Fernandez M, Thomas D, et al. The functional response of mesenchymal stem cells to electron-beam patterned elastomeric surfaces presenting micrometer to nanoscale heterogeneous rigidity[J]. Adv Mater, 2017,29(39):1-13. doi: 10.1002/adma.201702119.
[19] Hegedus O, Juriga D, Sipos E, et al. Free thiol groups on poly(aspartamide) based hydrogels facilitate tooth-derived progenitor cell proliferation and differentiation[J]. PLoS One, 2019,14(12):e0226363. doi: 10.1371/journal.pone.0226363.
doi: 10.1371/journal.pone.0226363 pmid: 31856233
[20] Sun M, Chi G, Xu J, et al. Extracellular matrix stiffness controls osteogenic differentiation of mesenchymal stem cells mediated by integrin alpha5[J]. Stem Cell Res Ther, 2018,9(1):52. doi: 10.1186/s13287-018-0798-0.
doi: 10.1186/s13287-018-0798-0 pmid: 29490668
[21] Cosgrove BD, Mui KL, Driscoll TP, et al. N-cadherin adhesive interactions modulate matrix mechanosensing and fate commitment of mesenchymal stem cells[J]. Nat Mater, 2016,15(12):1297-1306. doi: 10.1038/nmat4725.
doi: 10.1038/nmat4725 pmid: 27525568
[22] Driscoll TP, Cosgrove BD, Heo SJ, et al. Cytoskeletal to nuclear strain transfer regulates YAP signaling in mesenchymal stem cells[J]. Biophys J, 2015,108(12):2783-2793. doi: 10.1016/j.bpj.2015. 05.010.
doi: 10.1016/j.bpj.2015.05.010 pmid: 26083918
[23] Totaro A, Panciera T, Piccolo S. YAP/TAZ upstream signals and downstream responses[J]. Nat Cell Biol, 2018,20(8):888-899. doi: 10.1038/s41556-018-0142-z.
doi: 10.1038/s41556-018-0142-z pmid: 30050119
[24] Ivanovska IL, Swift J, Spinler K, et al. Cross-linked matrix rigidity and soluble retinoids synergize in nuclear lamina regulation of stem cell differentiation[J]. Mol Biol Cell, 2017,28(14):2010-2022. doi: 10.1091/mbc.E17-01-0010.
doi: 10.1091/mbc.E17-01-0010 pmid: 28566555
[25] Peng T, Liu L, MacLean AL, et al. A mathematical model of mechanotransduction reveals how mechanical memory regulates mesenchymal stem cell fate decisions[J]. BMC Syst Biol, 2017,11(1):55. doi: 10.1186/s12918-017-0429-x.
doi: 10.1186/s12918-017-0429-x pmid: 28511648
[26] Wei D, Liu A, Sun J, et al. Mechanics-controlled dynamic cell niches guided osteogenic differentiation of stem cells via preserved cellular mechanical memory[J]. ACS Appl Mater Interfaces, 2020,12(1):260-274. doi: 10.1021/acsami.9b18425.
doi: 10.1021/acsami.9b18425 pmid: 31800206
[27] Rosales AM, Vega SL, DelRio FW, et al. Hydrogels with reversible mechanics to probe dynamic cell microenvironments[J]. Angew Chem Int Ed Engl, 2017,56(40):12132-12136. doi: 10.1002/anie.201705684.
doi: 10.1002/anie.201705684 pmid: 28799225
[28] Yang C, DelRio FW, Ma H, et al. Spatially patterned matrix elasticity directs stem cell fate[J]. Proc Natl Acad Sci USA, 2016,113(31):e4439-e4445. doi: 10.1073/pnas.1609731113.
doi: 10.1073/pnas.1609731113 pmid: 27436901
[29] Jiao F, Zhao Y, Sun Q, et al. Spreading area and shape regulate the apoptosis and osteogenesis of mesenchymal stem cells on circular and branched micropatterned islands[J]. J Biomed Mater Res A, 2020,108(10):2080-2089. doi: 10.1002/jbm.a.36967.
doi: 10.1002/jbm.a.36967 pmid: 32319192
[30] Ahn EH, Kim Y, Kshiti z, et al. Spatial control of adult stem cell fate using nanotopographic cues[J]. Biomaterials, 2014,35(8):2401-2410. doi: 10.1016/j.biomaterials.2013.11.037.
doi: 10.1016/j.biomaterials.2013.11.037 pmid: 24388388
[31] Vordemvenne T, Wahnert D, Koettnitz J, et al. Bone regeneration: a novel osteoinductive function of spongostan by the interplay between its nano- and microtopography[J]. Cells, 2020,9(3):654. doi: 10.3390/cells9030654.
[32] Steeves AJ, Ho W, Munisso MC, et al. The implication of spatial statistics in human mesenchymal stem cell response to nanotubular architectures[J]. Int J Nanomedicine, 2020,15:2151-2169. doi: 10.2147/IJN.S238280.
doi: 10.2147/IJN.S238280 pmid: 32280212
[33] Mao L, Liu J, Zhao J, et al. Effect of micro-nano-hybrid structured hydroxyapatite bioceramics on osteogenic and cementogenic differentiation of human periodontal ligament stem cell via Wnt signaling pathway[J]. Int J Nanomedicine, 2015,10:7031-7044. doi: 10.2147/IJN.S90343.
doi: 10.2147/IJN.S90343 pmid: 26648716
[34] Liu J, Ruan J, Weir MD, et al. Periodontal bone-ligament-cementum regeneration via scaffolds and stem cells[J]. Cells, 2019,8(6):537. doi: 10.3390/cells8060537.
[35] Lou HY, Zhao W, Li X, et al. Membrane curvature underlies actin reorganization in response to nanoscale surface topography[J]. Proc Natl Acad Sci USA, 2019,116(46):23143-23151. doi: 10.1073/pnas.1910166116.
doi: 10.1073/pnas.1910166116 pmid: 31591250
[36] Zheng H, Tian Y, Gao Q, et al. Hierarchical micro-nano topography promotes cell adhesion and osteogenic differentiation via integrin alpha2-PI3K-AKT signaling axis[J]. Front Bioeng Biotechnol, 2020,8:463. doi: 10.3389/fbioe.2020.00463.
doi: 10.3389/fbioe.2020.00463 pmid: 32509748
[37] He D, Liu F, Cui S, et al. Mechanical load-induced H2S production by periodontal ligament stem cells activates M1 macrophages to promote bone remodeling and tooth movement via STAT1[J]. Stem Cell Res Ther, 2020,11(1):112. doi: 10.1186/s13287-020-01607-9.
pmid: 32169104
[38] Ullrich N, Schroder A, Jantsch J, et al. The role of mechanotransduction versus hypoxia during simulated orthodontic compressive strain-an in vitro study of human periodontal ligament fibroblasts[J]. Int J Oral Sci, 2019,11(4):33. doi: 10.1038/s41368-019-0066-x.
doi: 10.1038/s41368-019-0066-x pmid: 31685804
[39] Kim JH, Kang MS, Eltohamy M, et al. Dynamic mechanical and nanofibrous topological combinatory cues designed for periodontal ligament engineering[J]. PLoS One, 2016,11(3):e0149967. doi: 10.1371/journal.pone.0149967.
doi: 10.1371/journal.pone.0149967 pmid: 26989897
[40] Alvarez R, Stork CA, Sayoc-Becerra A, et al. A simulated microgravity environment causes a sustained defect in epithelial barrier function[J]. Sci Rep, 2019,9:17531. doi: 10.1038/s41598-019-53862-3.
doi: 10.1038/s41598-019-53862-3 pmid: 31772208
[41] Tominari T, Ichimaru R, Taniguchi K, et al. Hypergravity and microgravity exhibited reversal effects on the bone and muscle mass in mice[J]. Sci Rep, 2019,9(1):6614. doi: 10.1038/s41598-019-42829-z.
doi: 10.1038/s41598-019-42829-z pmid: 31036903
[42] Prodanov L, van Loon JJ, te Riet J, et al. Substrate nanotexture and hypergravity through centrifugation enhance initial osteoblastogenesis[J]. Tissue Eng Part A, 2013,19(1/2):114-124. doi: 10.1089/ten.TEA.2012.0267.
[43] Botelho J, Cavacas MA, Machado V, et al. Dental stem cells: recent progresses in tissue engineering and regenerative medicine[J]. Ann Med, 2017,49(8):644-651. doi: 10.1080/07853890.2017. 1347705.
doi: 10.1080/07853890.2017.1347705 pmid: 28649865
[1] CHEN Zetao,LIN Yixiong,YANG Jieting,HUANG Baoxin,CHEN Zhuofan. Research and development concept of barrier membranes based on “ immune microenvironment regulation” [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(8): 505-514.
[2] ZUO Xinhui,LI Jun,HAN Xiangzhen,LIU Xiaoyuan,HE Huiyu. Effects of hypoxia inducible factor-1α on osteogenic differentiation and angiogenesis related factors of bone marrow mesenchymal stem cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(7): 449-455.
[3] WANG Min,JIANG Nan,ZHU Songsong. A novel biomimetic micro/nano hierarchical interface of titanium enhances adhesion, proliferation and osteogenic differentiation of bone marrow mesenchymal cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(4): 226-233.
[4] TAN Guozhong,JIANG Qianzhou. Applications and prospects of 3D printing technology in pulp regeneration [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(4): 279-283.
[5] CHEN Zece,LONG Qian,GUAN Xiaoyan,LIU Jianguo. Research progress on microRNA-21 in regulating osteoclast and osteogenic differentiation in orthodontic treatment [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(3): 211-216.
[6] SHI Weiwei,DING Yi,TIAN Weidong,GUO Shujuan. Exosomes derived from lipopolysaccharide-preconditioned dental folic cells regulate osteogenic differentiation of periodontal ligament cell in periodontitis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(2): 81-87.
[7] YAN Shanyu,MEI Hongxiang,LI Juan. Role of mesenchymal stem cells migration in bone injury repair [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(12): 854-858.
[8] CHEN Songling,ZHU Shuangxi. The role of the membrane of the maxillary sinus in space osteogenesis under the sinus floor after elevation of the sinus floor [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(8): 477-486.
[9] QIN Qing,SONG Yang,LIU Jia,LI Qiang. Effects of casein kinase 2 interacting protein-1 on the osteogenic differentiation ability of human periodontal ligament stem cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(7): 421-426.
[10] LIU Huimin,LI Xiangwei. Research progress of scaffolds for promoting the vascularization of regenerated dental pulp [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(3): 200-204.
[11] WANG Zhiheng,ZUO Jie,WANG Mengqi,ZHU Shaojun,LIU Yishan. miR-214 inhibits the osteogenic differentiation of dental follicle cells in vitro [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(3): 146-152.
[12] XIAO Wenlan,HU Chen,RONG Shengan,ZHU Chenyou,WU Yingying. Application of dentin in bone tissue engineering [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(2): 127-130.
[13] ZHOU Jiaqi,SHU Linjing,XIONG Yi,ZHANG Yixin,XIANG Lin,WU Yingying. Study on the role of FoxO1 in the regulation of osteoblastic metabolism by 1,25(OH)2D3 in a high glucose environment [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(1): 24-29.
[14] LIAO Chunhui,LI Mingfei,YE Jinmei,PENG Wei,CHEN Songling. The regulatory mechanisms of IGF1 in the osteogenic differentiation of canine MSMSCs via BMP2-Smad1/5 signaling pathway [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(1): 16-23.
[15] REN Qingyuan,HE Wulin,WANG Qing,CHU Hongxing,LIN Haiyan. Effect of endoplasmic reticulum stress on the osteogenic differentiation of periodontal ligament cells under continuous static pressure [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(8): 485-489.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHU Song-song, HU Jing. The application of distraction osteogenesis in the temporomandibular joint ankylosis and secondary dentofacial deformities[J]. journal1, 2016, 24(1): 6 -10 .
[2] XU Jing. The influence of the impacted mandibular third molar extraction on the distal periodontal tissue of the mandibular second molar[J]. journal1, 2016, 24(1): 11 -14 .
[3] ZHONG Jiang-long, PAN Ji-yang, CHEN Wei-liang. The evaluation of Eagle syndrome treatment by surgery combined with antidepressant therapy[J]. journal1, 2016, 24(1): 26 -28 .
[4] CHEN Xi, SUN Qin-zhou. The study of colorimetric board of porcelain fused to metal restoration for moderate to severe dental fluorosis[J]. journal1, 2016, 24(1): 33 -36 .
[5] OUYANG Ke-xiong1, LIANG Jun, ZOU Rui, LI Zhi-qiang, BAI Zhi-bao, PIAO Zheng-guo, ZHAO Jian-Jiang.. Ion Torrent RNA-Seq detection and analysis of the long non-coding RNA in tongue squamous cell carcinoma[J]. journal1, 2016, 24(1): 15 -19 .
[6] YU Pei, XUE Jing, ZHANG Xiao-wei, ZHENG Cang-shang. The influence of the roughness of zirconia ceramic surface on microbial attachment[J]. journal1, 2016, 24(1): 20 -25 .
[7] LIU Fang. Clinical assessment of two fissure sealant techniques in children’s dental caries prevention[J]. journal1, 2016, 24(1): 44 -45 .
[8] . [J]. journal1, 2016, 24(1): 49 -52 .
[9] LU Jian-rong, BAN Hua-jie, WANG Dai-you, ZHOU Hui-hui, LONG Ru, QIN Shu-hua. Clinical observation of sternocleidomastoid muscle flaps combined with artificial biological membrane reparing the defects after parotidectomy[J]. journal1, 2016, 24(1): 29 -32 .
[10] LI Bin, HE Xiao-ning, GAO Yuan, HU Yu-ping. Clinical analysis of pain after two kinds of apical stop preparation[J]. journal1, 2016, 24(1): 40 -43 .
This work is licensed under a Creative Commons Attribution 3.0 License.