Journal of Prevention and Treatment for Stomatological Diseases ›› 2021, Vol. 29 ›› Issue (5): 314-321.doi: 10.12016/j.issn.2096-1456.2021.05.004

• Basic Study • Previous Articles     Next Articles

Inhibitory effects of epigallocatechin-3-gallate on the pathogenic properties of P. gingivalis in vitro

QI Xia1(),KONG Lingxue2,LI Shujuan1,MA Siting1,QI Yali1,ZHAO Lei3()   

  1. 1. Department of Periodontics, School and Hospital of Stomatology, Hebei Medical University, Hebei Key Laboratory of Stomatology,Hebei Clinical Research Center for Oral Diseases, Shijiazhuang 050017, China
    2. Department of Periodontics and Oral Mucosa, Jinan Stomatologic Hospital, Jinan 250001, China
    3. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2020-11-13 Revised:2020-12-13 Online:2021-05-20 Published:2021-03-08
  • Contact: Lei ZHAO E-mail:summyly@163.com;jollyzldoc@163.com
  • Supported by:
    Medical Science Research Project in Hebei Province(20190096);Natural Science Foundation of Hebei Province(H2019206541);Senile Disease Prevention project of Hebei Provincial Department of Finance(2017068877-2)

Abstract:

Objective To explore the antibacterial activity of epigallocatechin-3-gallate (EGCG) on P. gingivalis and the inhibitory effects on matrix metalloproteinases (MMPs) production induced by P. gingivalis. Methods The antimicrobial effect of EGCG against planktonic cultures and biofilms of P. gingivalis was evaluated using microplate dilution assays. The microstructural changes in biofilms were studied using scanning electron microscopy (SEM). The inhibitory effect of EGCG on arginine gingipain (Rgp) and lysine gingipain (Kgp) activity of P. gingivalis was evaluated using synthetic chromogenic peptides and fluorogenic substrates. Enzyme-linked immunosorbent assay (ELISA) and qRT-PCR analysis were used to assess MMP-1 and MMP-2 mRNA expression and secretion by human gingival fibroblasts (HGFs) stimulated with P. gingivalis in the presence or absence of EGCG, respectively. Results The MIC and MBC of EGCG against P. gingivalis were 62.5 μg/mL and 500 μg/mL, respectively. EGCG can not only inhibit the biofilm formation of P. gingivalis but also has a scavenging effect on mature biofilms and can affect their viability. Additionally, 10 μg/mL and 50 μg/mL of EGCG inhibited the proteinase activities of Rgp and Kgp, respectively (P < 0.05). Finally, the mRNA expression and secretion of MMP-1 and MMP-2 by HGFs stimulated by P. gingivalis were significantly inhibited by 50 μg/mL of EGCG (P < 0.05). Conclusion EGCG exhibits antimicrobial effects against P. gingivalis and reduces the expression of MMPs by HGFs.

Key words: epigallocatechin-3-gallate, Porphyromonas gingivalis, biofilm formation, biofilm reduction, arginine gingipain, lysine gingipain, antibacterial, anti-inflammatory, gingival fibroblasts, matrix metalloproteinase

CLC Number: 

  • R78

Table 1

The primers sequence of the genes used in qRT-PCR"

Target gene Primers sequence
MMP-1 F: 5′-GAAACCCTGAAGGTGATGAAGC-3′
R: 5′-TTGGCAAATCTGGCGTGTAAT-3′
MMP-2 F: 5′-TTCCGCTTCCAGGGCACAT-3′
R: 5′-GCACCTTCTGAGTTCCCACCAA-3′
β-actin F: 5′-CCACGAAACTACCTTCAACTCC-3′
R: 5′-GTGATCTCCTTCTGCATCCTGT-3′

Figure 1

Culture of P. gingivalis ATCC33277(×1 000)"

Figure 2

Inhibitory effect of different concentrations of EGCG on P. gingivalis biofilm a: the inhibitory effect of EGCG on P. gingivalis biofilm formation; 1 represents MBIC50 and 2 represents MBIC90; b: a marked reduction in the P. gingivalis biofilm biomass after exposure to EGCG ranging from 62.5 to 1 000 μg/mL; 3 represents MBRC50; c: the inhibitory effect of EGCG of pre-established P. gingivalis biofilm on the viability of P. gingivalis; 4 represents SMIC50; *: P < 0.05 vs. the control group; MBIC: minimum biofilm inhibition concentration; MBRC: minimum biofilm reduction concentration; SMIC: sessile minimal inhibitory concentration; EGCG: epi- gallocatechin-3-gallate"

Figure 3

Effect of the EGCG concentration on the mature biofilms of P. gingivalis using SEM(×1 000) a: untreated control group of P. gingivalis biofilm; b: a marked 50% reduction in P. gingivalis biofilm after 24 h of exposure to 250 μg/mL of EGCG compared with the control; c: disruption in the architecture of P. gingivalis biofilm after 24 h of exposure to 500 μg/mL of EGCG; d: no biofilm in 24 h pre-established P. gingivalis biofilms after 24 h of exposure to 1 000 μg/mL of EGCG; EGCG: epigallocate- chin-3-gallate"

Table 2

Effects of EGCG against P. gingivalis planktonic culture and biofilms"

Drug Planktonic P. gingivalis P.gingivalis biofilms
MIC MBC Formation Reduction Viability
MBIC50 MBIC90 MBRC50 MBRC90 SMIC50 SMIC90
EGCG(μg/mL) 62.5 500 7.8 31.25 250 > 1 000 125 > 1 000

Figure 4

Effect of EGCG on P. gingivalis Rgp and Kgp activities a-b: the inhibitory effect of EGCG on the proteolytic activity of P. gingivalis Rgp ; c-d: the inhibitory effect of EGCG on the proteolytic activity of P. gingivalis Kgp; *: P < 0.05 vs. the control group; EGCG: epigallocatechin-3-gallate"

Figure 5

Effect of P. gingivalis and EGCG on human gingival fibroblast viability using the MTT assay a: effects of P. gingivalis at different MOI values on HGFs viability; b: effects of EGCG on cell viability of HGFs; *: P < 0.05 vs. the control group; EGCG: epigallocatechin-3-gallate; HGFs: human gingival fibroblasts"

Figure 6

Effect of EGCG on the secretion of MMP-1 and MMP-2 by HGFs stimulated by P. gingivalis a-b: MMP-1 (a) and MMP-2 (b) in cell-free culture supernatants induced by P. gingivalis in the presence of EGCG for 24 h were quantified by ELISA; c-d: effects of EGCG on the expression of MMP-1 (c) and MMP-2 (d) mRNAs by HGFs for 24 h were measured by qRT-PCR analysis; *: P < 0.05 vs. the negative control [P. gingivalis (-), EGCG (-)]; #: P < 0.05 vs. the positive control [P. gingivalis(+), EGCG (-)]; EGCG: epigallocatechin-3-gallate; HGFs: human gingival fibroblasts"

[1] Sakanaka A, Takeuchi H, Kuboniwa M, et al. Dual lifestyle of Porphyromonas gingivalis in biofilm and gingival cells[J]. Microb Pathog, 2016, 94(10): 42-47. doi: 10.1016/j.micpath.2015.10.003.
doi: 10.1016/j.micpath.2015.10.003
[2] Tzach-Nahman R, Mizraji G, Shapira L, et al. Oral infection with Porphyromonas gingivalis induces peri-implantitis in a murine model: evaluation of bone loss and the local inflammatory response[J]. J Clin Periodontol, 2017, 44(7): 739-748. doi: 10.1111/jcpe.12735.
doi: 10.1111/jcpe.12735 pmid: 28453225
[3] Lu W, Gu JY, Zhang YY, et al. Tolerance induced by Porphyromonas gingivalis may occur independently of TLR2 and TLR4[J]. PLoS One, 2018, 13(7): e0200946. doi: 10.1371/journal.pone. 0200946.
doi: 10.1371/journal.pone.0200946 pmid: 30040860
[4] Xu W, Zhou W, Wang H, et al. Roles of porphyromonas gingivalis and its virulence factors in periodontitis[J]. Adv Protein Chem Struct Biol, 2020, 120(120): 45-84. doi: 10.1016/bs.apcsb.2019. 12.001.
[5] Mohanty R, Asopa SJ, Joseph MD, et al. Red complex: polymicrobial conglomerate in oral flora: a review[J]. J Family Med Prim Care, 2019, 8(11): 3480-3486. doi: 10.4103/jfmpc.jfmpc_759_19.
doi: 10.4103/jfmpc.jfmpc_759_19 pmid: 31803640
[6] Van TE, Sima C. Understanding resolution of inflammation in periodontal diseases: is chronic inflammatory periodontitis a failure to resolve?[J]. Periodontol, 2020, 82(1): 205-213. doi: 10.1111/prd.12317.
[7] Takeuchi H, Sasaki N, Yamaga S, et al. Porphyromonas gingivalis induces penetration of lipopolysaccharide and peptidoglycan through the gingival epithelium via degradation of junctional adhesion molecule 1[J]. PLoS Pathog, 2019, 15(11): e1008124. doi: 10.1371/journal.ppat.1008124.
doi: 10.1371/journal.ppat.1008124 pmid: 31697789
[8] Han K, Hwang E, Park JB. Excessive consumption of green tea as a risk factor for periodontal disease among korean adults[J]. Nutrients, 2016, 8(7): 408. doi: 10.3390/nu8070408.
[9] Lee HA, Song YR, Park MH, et al. Catechin ameliorates Porphyromonas gingivalis-induced inflammation via the regulation of TLR2/4 and inflammasome signaling[J]. J Periodontol, 2020, 91(5): 661-670. doi: 10.1002/JPER.18-0004.
doi: 10.1002/JPER.18-0004 pmid: 31473995
[10] Zeng Y, Nikitkova A, Abdelsalam H, et al. Activity of quercetin and kaemferol against Streptococcus mutans biofilm[J]. Arch Oral Biol, 2019, 98(98): 9-16. doi: 10.1016/j.archoralbio.2018.11.005.
[11] Xu X, Zhou XD, Wu CD. The tea catechin epigallocatechin gallate suppresses cariogenic virulence factors of streptococcus mutans[J]. Antimicrob Agents Chemother, 2011, 55(3): 1229-1236. doi: 10.1128/AAC.01016-10.
doi: 10.1128/AAC.01016-10 pmid: 21149622
[12] Li B, Li X, Lin H, et al. Curcumin as a promising antibacterial agent: effects on metabolism and biofilm formation in S. mutans[J]. Biomed Res Int, 2018: 4508709. doi: 10.1155/2018/4508709.
doi: 10.1155/2021/8845716 pmid: 33628821
[13] Li Y, Jiang X, Hao J, et al. Tea polyphenols: application in the control of oral microorganism infectious diseases[J]. Arch Oral Biol, 2019, 102:74-82. doi: 10.1016/j.archoralbio.2019.03.027.
doi: 10.1016/j.archoralbio.2019.03.027 pmid: 30974380
[14] Asahi Y, Noiri Y, Miura J, et al. Effects of the tea catechin epigallocatechin gallate on Porphyromonas gingivalis biofilms[J]. J Appl Microbiol, 2014, 116(5): 1164-1171. doi: 10.1111/jam.12458.
doi: 10.1111/jam.12458 pmid: 24471579
[15] Ben LA, Haas B, Grenier D. Tea polyphenols inhibit the growth and virulence properties of Fusobacterium nucleatum[J]. Sci Rep, 2017, 7(7): 44815. doi: 10.1038/srep44815.
[16] Navarro MD, Navarro PE, Cabezas HJ, et al. Antifolate activity of epigallocatechin gallate against Stenotrophomonas maltophilia[J]. Antimicrob Agents Chemother, 2005, 49(7): 2914-2920. doi: 10.1128/AAC.49.7.2914-2920.2005.
doi: 10.1128/AAC.49.7.2914-2920.2005 pmid: 15980368
[17] Zhao L, La VD, Grenier D. Antibacterial, antiadherence, antiprotease, and anti-inflammatory activities of various tea extracts: potential benefits for periodontal diseases[J]. J Med Food, 2013, 16(5): 428-436. doi: 10.1089/jmf.2012.0207.
doi: 10.1089/jmf.2012.0207 pmid: 23631500
[18] Sakanaka S, Aizawa M, Kim M, et al. Inhibitory effects of green tea polyphenols on growth and cellular adherence of an oral bacterium, Porphyromonas gingivalis[J]. Biosci Biotechnol Biochem, 1996, 60(5): 745-749. doi: 10.1271/bbb.60.745.
doi: 10.1271/bbb.60.745 pmid: 8704303
[19] Fournier-Larente J, Morin MP, Grenier D. Green tea catechins potentiate the effect of antibiotics and modulate adherence and gene expression in Porphyromonas gingivalis[J]. Arch Oral Biol, 2016, 65(65): 35-43. doi: 10.1016/j.archoralbio.2016.01.014.
[20] Xu X, Zhou XD, Wu CD. Tea catechin EGCg suppresses the mgl gene associated with halitosis[J]. J Dent Res, 2010, 89(11): 1304-1308. doi: 10.1177/0022034510378682.
doi: 10.1177/0022034510378682 pmid: 20858778
[21] Asahi Y, Noiri Y, Miura J, et al. Effects of the tea catechin epigallocatechin gallate on Porphyromonas gingivalis biofilms[J]. J Appl Microbiol, 2014, 116(5): 1164-1171. doi: 10.1111/jam.12458.
doi: 10.1111/jam.12458 pmid: 24471579
[22] Wu CY, Su TY, Wang MY, et al. Inhibitory effects of tea catechin epigallocatechin-3-gallate against biofilms formed from Streptococcus mutans and a probiotic lactobacillus strain[J]. Arch Oral Biol, 2018, 94(94): 69-77. doi: https://doi.org/10.1016/j.archoralbio. 2018. 06.019.
[23] Morin MP, Bedran TB, Fournier-Larente J, et al. Green tea extract and its major constituent epigallocatechin-3-gallate inhibit growth and halitosis-related properties of Solobacterium moorei[J]. BMC Complement Altern Med, 2015, 15(1): 48. doi: 10.1186/s12906-015-0557-z.
[24] Kristoffersen AK, Solli SJ, Nguyen TD, et al. Association of the rgpB gingipain genotype to the major fimbriae (fimA) genotype in clinical isolates of the periodontal pathogen Porphyromonas gingivalis[J]. J Oral Microbiol, 2015, 7:29124. doi: 10.3402/jom.v7. 29124.
doi: 10.3402/jom.v7.29124 pmid: 26387644
[25] Rieko I, Ishihara K, Shoji M, et al. Hemagglutinin/adhesin domains of porphyromonas gingivalis play key roles in coaggregation with treponema denticola[J]. FEMS Immunol Med Microbiol, 2010, 60(3): 251-260. doi: 10.1111/j.1574-695X.2010.00737.x.
doi: 10.1111/j.1574-695X.2010.00737.x pmid: 21039921
[26] Guo Y, Nguyen KA, Potempa J. Dichotomy of gingipains action as virulence factors: from cleaving substrates with the precision of a surgeon′s knife to a meat chopper-like brutal degradation of proteins[J]. Periodontol 2000, 2010, 54(1): 15-44. doi: 10.1111/j.1600-0757.2010.00377.x.
doi: 10.1111/j.1600-0757.2010.00377.x pmid: 20712631
[27] Popadiak K, Potempa J, Riesbeck K, et al. Biphasic effect of gingipains from Porphyromonas gingivalis on the human complement system[J]. J Immunol, 2007, 178(11): 7242-7250. doi: 10.4049/jimmunol.178.11.7242.
doi: 10.4049/jimmunol.178.11.7242 pmid: 17513773
[28] Bozkurt SB, Hakki SS, Hakki EE, et al. Porphyromonas gingivalis lipopolysaccharide induces a pro-inflammatory human gingival fibroblast phenotype[J]. Inflammation, 2017, 40(1): 144-153. doi: 10.1007/s10753-016-0463-7.
doi: 10.1007/s10753-016-0463-7 pmid: 27812843
[29] Nazemisalman B, Sajedinejad N, Darvish S, et al. Evaluation of inductive effects of different concentrations of cyclosporine A on MMP-1, MMP-2, MMP-3, TIMP-1, and TIMP-2 in fetal and adult human gingival fibroblasts[J]. J Basic Clin Physiol Pharmacol, 2019, 30(3): 1-8. doi: 10.1515/jbcpp-2018-0176.
[30] Javaid M, Bi J, Biddle C, et al. Platelet factor 4 upregulates matrix metalloproteinase-1 production in gingival fibroblasts[J]. J Periodontal Res, 2017, 52(4): 787-792. doi: 10.1111/jre.12448.
doi: 10.1111/jre.12448 pmid: 28256034
[31] Morin MP, Grenier D. Regulation of matrix metalloproteinase secretion by green tea catechins in a three-dimensional co-culture model of macrophages and gingival fibroblasts[J]. Arch Oral Biol, 2017, 75(75): 89-99. doi: 10.1016/j.archoralbio.2016.10.035.
[32] Wen WC, Kuo PJ, Chiang CY, et al. Epigallocatechin-3-gallate attenuates Porphyromonas gingivalis lipopolysaccharide-enhanced matrix metalloproteinase-1 production through inhibition of interleukin-6 in gingival fibroblasts[J]. J Periodontol, 2014, 85(6): 868-875. doi: 10.1902/jop.2013.120714.
doi: 10.1902/jop.2013.120714 pmid: 24215203
[33] Nomura R, Inaba H, Matayoshi S, et al. Inhibitory effect of a mouth rinse formulated with chlorhexidine gluconate, ethanol, and green tea extract against major oral bacterial species[J]. J Oral Sci, 2020, 62(2): 206-211. doi: 10.2334/josnusd.18-0483.
doi: 10.2334/josnusd.18-0483 pmid: 32161231
[34] Zeng J, Xu H, Cai Y, et al. The effect of ultrasound, Oxygen and sunlight on the stability of (-)-Epigallocatechin gallate[J]. Molecules, 2018, 23(9): 2394. doi: 10.3390/molecules23092394.
[1] ZHOU Zeying,ZHANG Jingyue,NIU Ju,LIU Dandan,ZHAO Wendi,LIU Xiaoqiu. Research progress on the antibacterial properties of dental resin materials [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(9): 638-643.
[2] WU Ju,WANG Ling,LIU Xingrong. Inhibitory effect of baicalin on Streptococcus mutans UA159 in vitro [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(7): 462-467.
[3] HUANG Jinxia,SHI Haitao,PAN Jian. Bleeding after tooth extraction in patients receiving anticoagulation/antiplatelet therapy [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(6): 417-421.
[4] FAN Dongyang,WANG Qiang,ZHOU Yijun,LI Siwen,FENG Xu,LIU Chunran,CUI Jiasen,SUN Hongchen. Research progress on the application of antibacterial titanium alloys in stomatology [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(4): 284-288.
[5] YANG Ting,HUANG Shiguang. The interaction between Cyclophilin A and CD147 and its clinical significance in periodontal diseases [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(3): 189-193.
[6] WANG Tianqi,DU Qing,XIE Weili. Preparation and antibacterial properties of a copper-niobium coating on a titanium surface by a microarc oxidation-microwave hydrothermal method [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(11): 733-739.
[7] XU Tengfei,CHEN Bin,AO Huizhi,SUN Weibin,WU WenLei. Effect of the antimicrobial photodynamic therapy in the treatment of periodontitis in type 2 diabetes mellitus: a systematic review and meta-analysis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(11): 752-760.
[8] XIE Lin,FENG Xiaoli,DENG Zi,MA Rui,HU Chen,SHAO Longquan. Neurotoxicity and mechanism of dental nanomaterials [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(9): 594-598.
[9] CAO Li,ZHANG Ning,BAI Yuxing. Mechanical strength and inhibition of plaque biofilm activity of a novel antibacterial Hawley retainer [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(8): 499-505.
[10] WANG Wanrong,GU Junting,GAO Peng,LI Jing,WAN Meichen,JIAO Kai,NIU Lina. Progress in the application of metal and metal oxide nanoparticles in the antibacterial modification of dental materials [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(8): 540-544.
[11] WANG Chunmeng,HONG Lihua,WANG Yu,ZHANG Zhimin. Research progress on the relationship between oral microorganisms and esophageal cancer [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(3): 195-199.
[12] CAO Zhiwei,YANG Yuqing,ZHOU Tao,WU Peiyao,XIE Liang. Research progress on trace elements-modified titanium implant surfaces [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(2): 107-111.
[13] ZHOU Wen,PENG Xian,CHENG Lei. Research progress on factors affecting bacterial adhesion on the oral implant surface [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(2): 102-106.
[14] HE Jialin, XU Yan, XIE Xianzhe, WANG Tengfei, HUO Dongmei. Effect of platelet-rich fibrin extract on the proliferation of gingival fibroblasts [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(8): 490-495.
[15] Shuyu CAI,Xiaoyue LIN,Jin LEI,Song GE. Effects of Porphyromonas gingivalis infection with different fimA genotypes on the secretion of IL-1β, IL-6, and TNF-α by human umbilical vein endothelial cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(6): 364-369.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHU Song-song, HU Jing. The application of distraction osteogenesis in the temporomandibular joint ankylosis and secondary dentofacial deformities[J]. journal1, 2016, 24(1): 6 -10 .
[2] XU Jing. The influence of the impacted mandibular third molar extraction on the distal periodontal tissue of the mandibular second molar[J]. journal1, 2016, 24(1): 11 -14 .
[3] ZHONG Jiang-long, PAN Ji-yang, CHEN Wei-liang. The evaluation of Eagle syndrome treatment by surgery combined with antidepressant therapy[J]. journal1, 2016, 24(1): 26 -28 .
[4] CHEN Xi, SUN Qin-zhou. The study of colorimetric board of porcelain fused to metal restoration for moderate to severe dental fluorosis[J]. journal1, 2016, 24(1): 33 -36 .
[5] OUYANG Ke-xiong1, LIANG Jun, ZOU Rui, LI Zhi-qiang, BAI Zhi-bao, PIAO Zheng-guo, ZHAO Jian-Jiang.. Ion Torrent RNA-Seq detection and analysis of the long non-coding RNA in tongue squamous cell carcinoma[J]. journal1, 2016, 24(1): 15 -19 .
[6] YU Pei, XUE Jing, ZHANG Xiao-wei, ZHENG Cang-shang. The influence of the roughness of zirconia ceramic surface on microbial attachment[J]. journal1, 2016, 24(1): 20 -25 .
[7] LIU Fang. Clinical assessment of two fissure sealant techniques in children’s dental caries prevention[J]. journal1, 2016, 24(1): 44 -45 .
[8] . [J]. journal1, 2016, 24(1): 49 -52 .
[9] LU Jian-rong, BAN Hua-jie, WANG Dai-you, ZHOU Hui-hui, LONG Ru, QIN Shu-hua. Clinical observation of sternocleidomastoid muscle flaps combined with artificial biological membrane reparing the defects after parotidectomy[J]. journal1, 2016, 24(1): 29 -32 .
[10] LI Bin, HE Xiao-ning, GAO Yuan, HU Yu-ping. Clinical analysis of pain after two kinds of apical stop preparation[J]. journal1, 2016, 24(1): 40 -43 .
This work is licensed under a Creative Commons Attribution 3.0 License.