Journal of Prevention and Treatment for Stomatological Diseases ›› 2021, Vol. 29 ›› Issue (5): 314-321.DOI: 10.12016/j.issn.2096-1456.2021.05.004
• Basic Study • Previous Articles Next Articles
QI Xia1(),KONG Lingxue2,LI Shujuan1,MA Siting1,QI Yali1,ZHAO Lei3(
)
Received:
2020-11-13
Revised:
2020-12-13
Online:
2021-05-20
Published:
2021-03-08
Contact:
Lei ZHAO
Supported by:
齐霞1(),孔令雪2,李淑娟1,马思婷1,齐雅丽1,赵蕾3(
)
通讯作者:
赵蕾
作者简介:
齐霞,主治医师,硕士,Email: 基金资助:
CLC Number:
QI Xia,KONG Lingxue,LI Shujuan,MA Siting,QI Yali,ZHAO Lei. Inhibitory effects of epigallocatechin-3-gallate on the pathogenic properties of P. gingivalis in vitro[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(5): 314-321.
齐霞,孔令雪,李淑娟,马思婷,齐雅丽,赵蕾. 表没食子儿茶素没食子酸酯对牙龈卟啉单胞菌细菌毒力抑制作用的体外研究[J]. 口腔疾病防治, 2021, 29(5): 314-321.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.kqjbfz.com/EN/10.12016/j.issn.2096-1456.2021.05.004
Target gene | Primers sequence |
---|---|
MMP-1 | F: 5′-GAAACCCTGAAGGTGATGAAGC-3′ |
R: 5′-TTGGCAAATCTGGCGTGTAAT-3′ | |
MMP-2 | F: 5′-TTCCGCTTCCAGGGCACAT-3′ |
R: 5′-GCACCTTCTGAGTTCCCACCAA-3′ | |
β-actin | F: 5′-CCACGAAACTACCTTCAACTCC-3′ |
R: 5′-GTGATCTCCTTCTGCATCCTGT-3′ |
Table 1 The primers sequence of the genes used in qRT-PCR
Target gene | Primers sequence |
---|---|
MMP-1 | F: 5′-GAAACCCTGAAGGTGATGAAGC-3′ |
R: 5′-TTGGCAAATCTGGCGTGTAAT-3′ | |
MMP-2 | F: 5′-TTCCGCTTCCAGGGCACAT-3′ |
R: 5′-GCACCTTCTGAGTTCCCACCAA-3′ | |
β-actin | F: 5′-CCACGAAACTACCTTCAACTCC-3′ |
R: 5′-GTGATCTCCTTCTGCATCCTGT-3′ |
Figure 2 Inhibitory effect of different concentrations of EGCG on P. gingivalis biofilm a: the inhibitory effect of EGCG on P. gingivalis biofilm formation; 1 represents MBIC50 and 2 represents MBIC90; b: a marked reduction in the P. gingivalis biofilm biomass after exposure to EGCG ranging from 62.5 to 1 000 μg/mL; 3 represents MBRC50; c: the inhibitory effect of EGCG of pre-established P. gingivalis biofilm on the viability of P. gingivalis; 4 represents SMIC50; *: P < 0.05 vs. the control group; MBIC: minimum biofilm inhibition concentration; MBRC: minimum biofilm reduction concentration; SMIC: sessile minimal inhibitory concentration; EGCG: epi- gallocatechin-3-gallate
Figure 3 Effect of the EGCG concentration on the mature biofilms of P. gingivalis using SEM(×1 000) a: untreated control group of P. gingivalis biofilm; b: a marked 50% reduction in P. gingivalis biofilm after 24 h of exposure to 250 μg/mL of EGCG compared with the control; c: disruption in the architecture of P. gingivalis biofilm after 24 h of exposure to 500 μg/mL of EGCG; d: no biofilm in 24 h pre-established P. gingivalis biofilms after 24 h of exposure to 1 000 μg/mL of EGCG; EGCG: epigallocate- chin-3-gallate
Drug | Planktonic P. gingivalis | P.gingivalis biofilms | ||||||
---|---|---|---|---|---|---|---|---|
MIC | MBC | Formation | Reduction | Viability | ||||
MBIC50 | MBIC90 | MBRC50 | MBRC90 | SMIC50 | SMIC90 | |||
EGCG(μg/mL) | 62.5 | 500 | 7.8 | 31.25 | 250 | > 1 000 | 125 | > 1 000 |
Table 2 Effects of EGCG against P. gingivalis planktonic culture and biofilms
Drug | Planktonic P. gingivalis | P.gingivalis biofilms | ||||||
---|---|---|---|---|---|---|---|---|
MIC | MBC | Formation | Reduction | Viability | ||||
MBIC50 | MBIC90 | MBRC50 | MBRC90 | SMIC50 | SMIC90 | |||
EGCG(μg/mL) | 62.5 | 500 | 7.8 | 31.25 | 250 | > 1 000 | 125 | > 1 000 |
Figure 4 Effect of EGCG on P. gingivalis Rgp and Kgp activities a-b: the inhibitory effect of EGCG on the proteolytic activity of P. gingivalis Rgp ; c-d: the inhibitory effect of EGCG on the proteolytic activity of P. gingivalis Kgp; *: P < 0.05 vs. the control group; EGCG: epigallocatechin-3-gallate
Figure 5 Effect of P. gingivalis and EGCG on human gingival fibroblast viability using the MTT assay a: effects of P. gingivalis at different MOI values on HGFs viability; b: effects of EGCG on cell viability of HGFs; *: P < 0.05 vs. the control group; EGCG: epigallocatechin-3-gallate; HGFs: human gingival fibroblasts
Figure 6 Effect of EGCG on the secretion of MMP-1 and MMP-2 by HGFs stimulated by P. gingivalis a-b: MMP-1 (a) and MMP-2 (b) in cell-free culture supernatants induced by P. gingivalis in the presence of EGCG for 24 h were quantified by ELISA; c-d: effects of EGCG on the expression of MMP-1 (c) and MMP-2 (d) mRNAs by HGFs for 24 h were measured by qRT-PCR analysis; *: P < 0.05 vs. the negative control [P. gingivalis (-), EGCG (-)]; #: P < 0.05 vs. the positive control [P. gingivalis(+), EGCG (-)]; EGCG: epigallocatechin-3-gallate; HGFs: human gingival fibroblasts
[1] |
Sakanaka A, Takeuchi H, Kuboniwa M, et al. Dual lifestyle of Porphyromonas gingivalis in biofilm and gingival cells[J]. Microb Pathog, 2016, 94(10): 42-47. doi: 10.1016/j.micpath.2015.10.003.
DOI URL |
[2] |
Tzach-Nahman R, Mizraji G, Shapira L, et al. Oral infection with Porphyromonas gingivalis induces peri-implantitis in a murine model: evaluation of bone loss and the local inflammatory response[J]. J Clin Periodontol, 2017, 44(7): 739-748. doi: 10.1111/jcpe.12735.
DOI URL PMID |
[3] |
Lu W, Gu JY, Zhang YY, et al. Tolerance induced by Porphyromonas gingivalis may occur independently of TLR2 and TLR4[J]. PLoS One, 2018, 13(7): e0200946. doi: 10.1371/journal.pone. 0200946.
DOI URL PMID |
[4] | Xu W, Zhou W, Wang H, et al. Roles of porphyromonas gingivalis and its virulence factors in periodontitis[J]. Adv Protein Chem Struct Biol, 2020, 120(120): 45-84. doi: 10.1016/bs.apcsb.2019. 12.001. |
[5] |
Mohanty R, Asopa SJ, Joseph MD, et al. Red complex: polymicrobial conglomerate in oral flora: a review[J]. J Family Med Prim Care, 2019, 8(11): 3480-3486. doi: 10.4103/jfmpc.jfmpc_759_19.
DOI URL PMID |
[6] | Van TE, Sima C. Understanding resolution of inflammation in periodontal diseases: is chronic inflammatory periodontitis a failure to resolve?[J]. Periodontol, 2020, 82(1): 205-213. doi: 10.1111/prd.12317. |
[7] |
Takeuchi H, Sasaki N, Yamaga S, et al. Porphyromonas gingivalis induces penetration of lipopolysaccharide and peptidoglycan through the gingival epithelium via degradation of junctional adhesion molecule 1[J]. PLoS Pathog, 2019, 15(11): e1008124. doi: 10.1371/journal.ppat.1008124.
DOI URL PMID |
[8] | Han K, Hwang E, Park JB. Excessive consumption of green tea as a risk factor for periodontal disease among korean adults[J]. Nutrients, 2016, 8(7): 408. doi: 10.3390/nu8070408. |
[9] |
Lee HA, Song YR, Park MH, et al. Catechin ameliorates Porphyromonas gingivalis-induced inflammation via the regulation of TLR2/4 and inflammasome signaling[J]. J Periodontol, 2020, 91(5): 661-670. doi: 10.1002/JPER.18-0004.
DOI URL PMID |
[10] | Zeng Y, Nikitkova A, Abdelsalam H, et al. Activity of quercetin and kaemferol against Streptococcus mutans biofilm[J]. Arch Oral Biol, 2019, 98(98): 9-16. doi: 10.1016/j.archoralbio.2018.11.005. |
[11] |
Xu X, Zhou XD, Wu CD. The tea catechin epigallocatechin gallate suppresses cariogenic virulence factors of streptococcus mutans[J]. Antimicrob Agents Chemother, 2011, 55(3): 1229-1236. doi: 10.1128/AAC.01016-10.
DOI URL PMID |
[12] |
Li B, Li X, Lin H, et al. Curcumin as a promising antibacterial agent: effects on metabolism and biofilm formation in S. mutans[J]. Biomed Res Int, 2018: 4508709. doi: 10.1155/2018/4508709.
DOI URL PMID |
[13] |
Li Y, Jiang X, Hao J, et al. Tea polyphenols: application in the control of oral microorganism infectious diseases[J]. Arch Oral Biol, 2019, 102:74-82. doi: 10.1016/j.archoralbio.2019.03.027.
DOI URL PMID |
[14] |
Asahi Y, Noiri Y, Miura J, et al. Effects of the tea catechin epigallocatechin gallate on Porphyromonas gingivalis biofilms[J]. J Appl Microbiol, 2014, 116(5): 1164-1171. doi: 10.1111/jam.12458.
DOI URL PMID |
[15] | Ben LA, Haas B, Grenier D. Tea polyphenols inhibit the growth and virulence properties of Fusobacterium nucleatum[J]. Sci Rep, 2017, 7(7): 44815. doi: 10.1038/srep44815. |
[16] |
Navarro MD, Navarro PE, Cabezas HJ, et al. Antifolate activity of epigallocatechin gallate against Stenotrophomonas maltophilia[J]. Antimicrob Agents Chemother, 2005, 49(7): 2914-2920. doi: 10.1128/AAC.49.7.2914-2920.2005.
DOI URL PMID |
[17] |
Zhao L, La VD, Grenier D. Antibacterial, antiadherence, antiprotease, and anti-inflammatory activities of various tea extracts: potential benefits for periodontal diseases[J]. J Med Food, 2013, 16(5): 428-436. doi: 10.1089/jmf.2012.0207.
DOI URL PMID |
[18] |
Sakanaka S, Aizawa M, Kim M, et al. Inhibitory effects of green tea polyphenols on growth and cellular adherence of an oral bacterium, Porphyromonas gingivalis[J]. Biosci Biotechnol Biochem, 1996, 60(5): 745-749. doi: 10.1271/bbb.60.745.
DOI URL PMID |
[19] | Fournier-Larente J, Morin MP, Grenier D. Green tea catechins potentiate the effect of antibiotics and modulate adherence and gene expression in Porphyromonas gingivalis[J]. Arch Oral Biol, 2016, 65(65): 35-43. doi: 10.1016/j.archoralbio.2016.01.014. |
[20] |
Xu X, Zhou XD, Wu CD. Tea catechin EGCg suppresses the mgl gene associated with halitosis[J]. J Dent Res, 2010, 89(11): 1304-1308. doi: 10.1177/0022034510378682.
DOI URL PMID |
[21] |
Asahi Y, Noiri Y, Miura J, et al. Effects of the tea catechin epigallocatechin gallate on Porphyromonas gingivalis biofilms[J]. J Appl Microbiol, 2014, 116(5): 1164-1171. doi: 10.1111/jam.12458.
DOI URL PMID |
[22] | Wu CY, Su TY, Wang MY, et al. Inhibitory effects of tea catechin epigallocatechin-3-gallate against biofilms formed from Streptococcus mutans and a probiotic lactobacillus strain[J]. Arch Oral Biol, 2018, 94(94): 69-77. doi: https://doi.org/10.1016/j.archoralbio. 2018. 06.019. |
[23] | Morin MP, Bedran TB, Fournier-Larente J, et al. Green tea extract and its major constituent epigallocatechin-3-gallate inhibit growth and halitosis-related properties of Solobacterium moorei[J]. BMC Complement Altern Med, 2015, 15(1): 48. doi: 10.1186/s12906-015-0557-z. |
[24] |
Kristoffersen AK, Solli SJ, Nguyen TD, et al. Association of the rgpB gingipain genotype to the major fimbriae (fimA) genotype in clinical isolates of the periodontal pathogen Porphyromonas gingivalis[J]. J Oral Microbiol, 2015, 7:29124. doi: 10.3402/jom.v7. 29124.
DOI URL PMID |
[25] |
Rieko I, Ishihara K, Shoji M, et al. Hemagglutinin/adhesin domains of porphyromonas gingivalis play key roles in coaggregation with treponema denticola[J]. FEMS Immunol Med Microbiol, 2010, 60(3): 251-260. doi: 10.1111/j.1574-695X.2010.00737.x.
DOI URL PMID |
[26] |
Guo Y, Nguyen KA, Potempa J. Dichotomy of gingipains action as virulence factors: from cleaving substrates with the precision of a surgeon′s knife to a meat chopper-like brutal degradation of proteins[J]. Periodontol 2000, 2010, 54(1): 15-44. doi: 10.1111/j.1600-0757.2010.00377.x.
DOI URL PMID |
[27] |
Popadiak K, Potempa J, Riesbeck K, et al. Biphasic effect of gingipains from Porphyromonas gingivalis on the human complement system[J]. J Immunol, 2007, 178(11): 7242-7250. doi: 10.4049/jimmunol.178.11.7242.
DOI URL PMID |
[28] |
Bozkurt SB, Hakki SS, Hakki EE, et al. Porphyromonas gingivalis lipopolysaccharide induces a pro-inflammatory human gingival fibroblast phenotype[J]. Inflammation, 2017, 40(1): 144-153. doi: 10.1007/s10753-016-0463-7.
DOI URL PMID |
[29] | Nazemisalman B, Sajedinejad N, Darvish S, et al. Evaluation of inductive effects of different concentrations of cyclosporine A on MMP-1, MMP-2, MMP-3, TIMP-1, and TIMP-2 in fetal and adult human gingival fibroblasts[J]. J Basic Clin Physiol Pharmacol, 2019, 30(3): 1-8. doi: 10.1515/jbcpp-2018-0176. |
[30] |
Javaid M, Bi J, Biddle C, et al. Platelet factor 4 upregulates matrix metalloproteinase-1 production in gingival fibroblasts[J]. J Periodontal Res, 2017, 52(4): 787-792. doi: 10.1111/jre.12448.
DOI URL PMID |
[31] | Morin MP, Grenier D. Regulation of matrix metalloproteinase secretion by green tea catechins in a three-dimensional co-culture model of macrophages and gingival fibroblasts[J]. Arch Oral Biol, 2017, 75(75): 89-99. doi: 10.1016/j.archoralbio.2016.10.035. |
[32] |
Wen WC, Kuo PJ, Chiang CY, et al. Epigallocatechin-3-gallate attenuates Porphyromonas gingivalis lipopolysaccharide-enhanced matrix metalloproteinase-1 production through inhibition of interleukin-6 in gingival fibroblasts[J]. J Periodontol, 2014, 85(6): 868-875. doi: 10.1902/jop.2013.120714.
DOI URL PMID |
[33] |
Nomura R, Inaba H, Matayoshi S, et al. Inhibitory effect of a mouth rinse formulated with chlorhexidine gluconate, ethanol, and green tea extract against major oral bacterial species[J]. J Oral Sci, 2020, 62(2): 206-211. doi: 10.2334/josnusd.18-0483.
DOI URL PMID |
[34] | Zeng J, Xu H, Cai Y, et al. The effect of ultrasound, Oxygen and sunlight on the stability of (-)-Epigallocatechin gallate[J]. Molecules, 2018, 23(9): 2394. doi: 10.3390/molecules23092394. |
[1] | ZHOU Zeying,ZHANG Jingyue,NIU Ju,LIU Dandan,ZHAO Wendi,LIU Xiaoqiu. Research progress on the antibacterial properties of dental resin materials [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(9): 638-643. |
[2] | WU Ju,WANG Ling,LIU Xingrong. Inhibitory effect of baicalin on Streptococcus mutans UA159 in vitro [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(7): 462-467. |
[3] | HUANG Jinxia,SHI Haitao,PAN Jian. Bleeding after tooth extraction in patients receiving anticoagulation/antiplatelet therapy [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(6): 417-421. |
[4] | FAN Dongyang,WANG Qiang,ZHOU Yijun,LI Siwen,FENG Xu,LIU Chunran,CUI Jiasen,SUN Hongchen. Research progress on the application of antibacterial titanium alloys in stomatology [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(4): 284-288. |
[5] | YANG Ting,HUANG Shiguang. The interaction between Cyclophilin A and CD147 and its clinical significance in periodontal diseases [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(3): 189-193. |
[6] | WANG Tianqi,DU Qing,XIE Weili. Preparation and antibacterial properties of a copper-niobium coating on a titanium surface by a microarc oxidation-microwave hydrothermal method [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(11): 733-739. |
[7] | XU Tengfei,CHEN Bin,AO Huizhi,SUN Weibin,WU WenLei. Effect of the antimicrobial photodynamic therapy in the treatment of periodontitis in type 2 diabetes mellitus: a systematic review and meta-analysis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(11): 752-760. |
[8] | XIE Lin,FENG Xiaoli,DENG Zi,MA Rui,HU Chen,SHAO Longquan. Neurotoxicity and mechanism of dental nanomaterials [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(9): 594-598. |
[9] | CAO Li,ZHANG Ning,BAI Yuxing. Mechanical strength and inhibition of plaque biofilm activity of a novel antibacterial Hawley retainer [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(8): 499-505. |
[10] | WANG Wanrong,GU Junting,GAO Peng,LI Jing,WAN Meichen,JIAO Kai,NIU Lina. Progress in the application of metal and metal oxide nanoparticles in the antibacterial modification of dental materials [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(8): 540-544. |
[11] | WANG Chunmeng,HONG Lihua,WANG Yu,ZHANG Zhimin. Research progress on the relationship between oral microorganisms and esophageal cancer [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(3): 195-199. |
[12] | ZHOU Wen,PENG Xian,CHENG Lei. Research progress on factors affecting bacterial adhesion on the oral implant surface [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(2): 102-106. |
[13] | CAO Zhiwei,YANG Yuqing,ZHOU Tao,WU Peiyao,XIE Liang. Research progress on trace elements-modified titanium implant surfaces [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(2): 107-111. |
[14] | HE Jialin, XU Yan, XIE Xianzhe, WANG Tengfei, HUO Dongmei. Effect of platelet-rich fibrin extract on the proliferation of gingival fibroblasts [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(8): 490-495. |
[15] | Shuyu CAI,Xiaoyue LIN,Jin LEI,Song GE. Effects of Porphyromonas gingivalis infection with different fimA genotypes on the secretion of IL-1β, IL-6, and TNF-α by human umbilical vein endothelial cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(6): 364-369. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
This work is licensed under Creative Commons Attribution 3.0 License.