Journal of Prevention and Treatment for Stomatological Diseases ›› 2021, Vol. 29 ›› Issue (5): 334-339.DOI: 10.12016/j.issn.2096-1456.2021.05.007
• Review Articles • Previous Articles Next Articles
ZHOU Anqi1(),LIU Jiayi1,JIA Yinan1,XIANG Lin2(
)
Received:
2020-06-07
Revised:
2020-11-24
Online:
2021-05-20
Published:
2021-03-08
Contact:
Lin XIANG
Supported by:
通讯作者:
向琳
作者简介:
周安琪,本科,Email: 基金资助:
CLC Number:
ZHOU Anqi,LIU Jiayi,JIA Yinan,XIANG Lin. Research progress on the Hippo-YAP signaling pathway mediated osteoimmunology in modulating implant osseointegration[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(5): 334-339.
周安琪,刘佳怡,贾懿楠,向琳. Hippo-YAP信号轴介导骨免疫调节种植体骨结合的研究进展[J]. 口腔疾病防治, 2021, 29(5): 334-339.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.kqjbfz.com/EN/10.12016/j.issn.2096-1456.2021.05.007
Figure 1 Polarization of macrophages in osteoimmunology-modulated osseointegration LPS: lipopolysaccharide; IFN-γ: interferon-γ; iNOS: inducible nitric oxide synthase; TNF-α: tumor necrosis factor-α; IL: interleukin; TGF-β: transforming growth factor-β ; BMP-2: bone morphogenetic protein-2; PDGF-BB: platelet-derived growth factor-BB; VEGF: vascular endothelial growth factor; Arg 1: arginase 1
[1] | Bai L, Du Z, Du J, et al. A multifaceted coating on Titanium dictates osteoimmunomodulation and osteo/angio-genesis towards ameliorative osseointegration[J]. Biomaterials, 2018, 162(162): 154-169. doi: 10.1016/j.biomaterials.2018.02.010. |
[2] |
Insua A, Monje A, Wang HL, et al. Basis of bone metabolism around dental implants during osseointegration and peri-implant bone loss[J]. J Biomed Mater Res A, 2017, 105(7): 2075-2089. doi: 10.1002/jbm.a.36060.
DOI URL PMID |
[3] |
Bai L, Liu Y, Du Z, et al. Differential effect of hydroxyapatite nano-particle versus nano-rod decorated Titanium micro-surface on osseointegration[J]. Acta Biomater, 2018, 76:344-358. doi: 10.1016/j.actbio.2018.06.023.
DOI URL PMID |
[4] |
Xiang L, Yu H, Zhang X, et al. The versatile hippo pathway in oral-maxillofacial development and bone remodeling[J]. Dev Biol, 2018, 440(2): 53-63. doi: 10.1016/j.ydbio.2018.05.017.
DOI URL PMID |
[5] | 郭佩佩, 王长琛, 杨美蓉, 等. Hippo通路在颅面器官发育中的作用[J]. 中国优生与遗传杂志, 2020, 28(2): 223-225. doi: 10.13404/j.cnki.cjbhh.2020.02.033. |
Guo PP, Wang CC, Yang MR, et al. Hippo signaling pathway in craniofacial organ development[J]. Chin J Birth Health Hered, 2020, 28(2): 223-225. doi: 10.13404/j.cnki.cjbhh.2020.02.033. | |
[6] |
Arron JR, Choi Y. Bone versus immune system[J]. Nature, 2000, 408(6812): 535-536. doi: 10.1038/35046196.
DOI URL PMID |
[7] | Tsukasaki M, Takayanagi H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease[J]. Nat Rev Immunol, 2019, 19(10): 626-642. doi: 10.1038/s41577-019-0178-8. |
[8] | 张欣, 谢加兵. 骨髓间充质干细胞旁分泌: 在血管生成、免疫及炎症调整方面的作用[J]. 中国组织工程研究, 2019, 23(1): 139-143. doi: 10.3969/j.issn.2095-4344.0527. |
Zhang X, Xie JB. Paracrine actions of bone marrow mesenchymal stem cells: angiogenesis, immunoregulation, and inflammatory regulation[J]. Chin J Tissue Eng Res, 2019, 23(1): 139-143. doi: 10.3969/j.issn.2095-4344.0527. | |
[9] |
Lee JWY, Bance ML. Physiology of osseointegration[J]. Otolaryngol Clin North Am, 2019, 52(2): 231-242. doi: 10.1016/j.otc.2018. 11.004.
DOI URL PMID |
[10] | Brown BN, Haschak MJ, Lopresti ST, et al. Effects of age-related shifts in cellular function and local microenvironment upon the innate immune response to implants[J]. Semin Immunol, 2017, 29(29): 24-32. doi: 10.1016/j.smim.2017.05.001. |
[11] |
Davies LC, Taylor PR. Tissue-resident macrophages: then and now[J]. Immunology, 2015, 144(4): 541-548. doi: 10.1111/imm.12451.
DOI URL PMID |
[12] |
Yuan Y, Jiang Y, Wang B, et al. Deficiency of calcitonin gene-related peptide affects macrophage polarization in osseointegration[J]. Front Physiol, 2020, 11:733. doi: 10.3389/fphys.2020.00733.
DOI URL PMID |
[13] |
Singhatanadgit W, Toso M, Pratheepsawangwong B, et al. Titanium dioxide nanotubes of defined diameter enhance mesenchymal stem cell proliferation via JNK-and ERK-dependent up-regulation of fibroblast growth factor-2 by T lymphocytes[J]. J Biomater Appl, 2019, 33(7): 997-1010. doi: 10.1177/0885328218816565.
DOI URL PMID |
[14] |
Marcatti AW, Marino MV, Tambasco DP, et al. Nanotextured Titanium surfaces stimulate spreading,migration,and growth of rat mast cells:Nanotextured Titanium surfaces stimulate mast cells[J]. J Biomed Mater Res A, 2017, 105(8): 2150-2161. doi: 10.1002/jbm.a.36076.
DOI URL PMID |
[15] |
An J, Li G, Zhang J, et al. GNAS knockdown suppresses osteogenic differentiation of mesenchymal stem cells via activation of Hippo signaling pathway[J]. J Cell Physiol, 2019, 234(12): 22299-22310. doi: 10.1002/jcp.28796.
DOI URL PMID |
[16] |
Zhang Q, Guo Y, Yu H, et al. Receptor activity-modifying protein 1 regulates the phenotypic expression of BMSCs via the Hippo/Yap pathway[J]. J Cell Physiol, 2019, 234(8): 13969-13976. doi: 10.1002/jcp.28082.
DOI URL PMID |
[17] |
Lorthongpanich C, Thumanu K, Tangkiettrakul K, et al. YAP as a key regulator of adipo-osteogenic differentiation in human MSCs[J]. Stem Cell Res Ther, 2019, 10(1): 402. doi: 10.1186/s13287-019-1494-4.
DOI URL PMID |
[18] |
Seo E, Basu-Roy U, Gunaratne PH, et al. SOX2 regulates YAP1 to maintain stemness and determine cell fate in the Osteo-Adipo lineage[J]. Cell Rep, 2013, 3(6): 2075-2087. doi: 10.1016/j.celrep.2013.05.029.
DOI URL PMID |
[19] |
Brandão AS, Bensimon-Brito A, Lourenço R, et al. Yap induces osteoblast differentiation by modulating Bmp signalling during zebrafish caudal fin regeneration[J]. J Cell Sci, 2019, 132(22): jcs231993. doi: 10.1242/jcs.231993.
DOI URL PMID |
[20] |
Murakami K, Kikugawa S, Kobayashi Y, et al. Olfactomedin-like protein OLFML1 inhibits Hippo signaling and mineralization in osteoblasts[J]. Biochem Biophys Res Commun, 2018, 505(2): 419-425. doi: 10.1016/j.bbrc.2018.09.112.
DOI URL PMID |
[21] |
Zhu W, Ming P, Qiu J, et al. Effect of Titanium ions on the hippo/YAP signaling pathway in regulating biological behaviors of MC3T3-E1 osteoblasts:regulation of osteoblasts by Ti ions via hippo/YAP[J]. J Appl Toxicol, 2018, 38(6): 824-833.
DOI URL PMID |
[22] |
Lee J, Youn B, Kim K, et al. Mst2 controls bone homeostasis by regulating osteoclast and osteoblast differentiation[J]. J Bone Miner Res, 2015, 30(9): 1597-1607. doi: 10.1002/jbmr.2503.
DOI URL PMID |
[23] | Zhao L, Guan H, Song C, et al. YAP1 is essential for osteoclastogenesis through a TEADs-dependent mechanism[J]. Bone, 2018, 110(110): 177-186. doi: 10.1016/j.bone.2018.01.035. |
[24] |
Li S, Li Q, Zhu Y, et al. GDF15 induced by compressive force contributes to osteoclast differentiation in human periodontal ligament cells[J]. Exp Cell Res, 2020, 387(1): 111745. doi: 10.1016/j.yexcr.2019.111745.
DOI URL PMID |
[25] |
Wang L, You X, Lotinun S, et al. Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk[J]. Nat Commun, 2020, 11(1): 282. doi: 10.1038/s41467-019-14146-6.
DOI URL PMID |
[26] |
Kegelman CD, Coulombe JC, Jordan KM, et al. YAP and TAZ mediate osteocyte perilacunar/canalicular remodeling[J]. J Bone Miner Res, 2020, 35(1): 196-210. doi: 10.1002/jbmr.3876.
DOI URL PMID |
[27] |
Feng Y, Liang Y, Zhu X, et al. The signaling protein Wnt5a promotes TGFβ1-mediated macrophage polarization and kidney fibrosis by inducing the transcriptional regulators Yap/Taz[J]. J Biol Chem, 2018, 293(50): 19290-19302. doi: 10.1074/jbc.RA118. 005457.
DOI URL PMID |
[28] |
Li C, Jin Y, Wei S, et al. Hippo signaling controls NLR family pyrin domain containing 3 activation and governs immunoregulation of mesenchymal stem cells in mouse liver injury[J]. Hepatology, 2019, 70(5): 1714-1731. doi: 10.1002/hep.30700.
DOI URL PMID |
[29] | Zhou X, Li W, Wang S, et al. YAP aggravates inflammatory bowel disease by regulating M1/M2 macrophage polarization and gut microbial homeostasis[J]. Cell Rep, 2019, 27(4): 1176-1189.e5. doi: 10.1016/j.celrep.2019.03.028. |
[30] | Xiong J, Almeida M, O'brien CA. The YAP/TAZ transcriptional co-activators have opposing effects at different stages of osteoblast differentiation[J]. Bone, 2018, 112(112): 1-9. doi: 10.1016/j.bone. 2018.04.001. |
[31] |
Yang B, Sun H, Xu X, et al. YAP1 inhibits the induction of TNF-α-stimulated bone-resorbing mediators by suppressing the NF-κB signaling pathway in MC3T3-E1 cells[J]. J Cell Physiol, 2020, 235(5): 4698-4708. doi: 10.1002/jcp.29348.
DOI URL PMID |
[32] | Bisgaard LS, Mogensen CK, Rosendahl A, et al. Bone marrow-derived and peritoneal macrophages have different inflammatory response to oxLDL and M1/M2 marker expression-implications for atherosclerosis research[J]. Sci Rep, 2016, 6(1): 35234. doi: 10. 1038/srep35234. |
[33] |
Linehan E, Dombrowski Y, Snoddy R, et al. Aging impairs peritoneal but not bone marrow-derived macrophage phagocytosis[J]. Aging Cell, 2014, 13(4): 699-708.
DOI URL PMID |
[34] | Cougoule C, Van Goethem E, Le Cabec V, et al. Blood leukocytes and macrophages of various phenotypes have distinct abilities to form podosomes and to migrate in 3D environments[J]. Eur J Cell Biol, 2012, 91(11/12): 938-949. doi: 10.1016/j.ejcb.2012.07.002. |
[35] |
Mantovani A, Sica A, Sozzani S, et al. The chemokine system in diverse forms of macrophage activation and polarization[J]. Trends Immunol, 2004, 25(12): 677-686. doi: 10.1016/j.it.2004.09.015.
DOI URL PMID |
[36] |
Gao B, Deng R, Chai Y, et al. Macrophage-lineage TRAP+ cells recruit periosteum-derived cells for periosteal osteogenesis and regeneration[J]. J Clin Invest, 2019, 129(6): 2578-2594. doi: 10.1172/ JCI98857.
DOI URL PMID |
[1] | GUO Li, WU Guofeng, SHI Anyuan, GU Chunning, JIANG Xiaowei, QIN Haiyan. Analysis of factors related to early failure of 1 001 implants with 3.3 mm narrow-diameter [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2022, 30(9): 644-650. |
[2] | ZHOU Qiyue, HONG Gaoying, WU Tong, CHEN Chen, XIE Haifeng. Characterization and biocompatibility analysis of different silanes coupling c(RGDfK) cyclic peptide on titanium surfaces [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2022, 30(6): 398-405. |
[3] | ZOU Rongfang, LAI Xuan, DENG Bin. Application prospect of silicon nitride ceramics in dental implants [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2022, 30(6): 449-452. |
[4] | ZHANG Huaying, ZHAO Yuwei, YU Haiyang. Research progress on enhancing biological activity of titanium implants by chairside ultraviolet photofunctionalization [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2022, 30(4): 295-299. |
[5] | GONG Shengkai, YANG Xiaoshan, DOU Geng, LI Zihan, LIU Siying, WANG Wei, LIU Shiyu. Dental pulp stem cell-derived apoptotic bodies regulate macrophage polarization and inflammatory response [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2022, 30(1): 12-19. |
[6] | LI Peihan,LANG Kai,SONG Wen. Construction of a curcumin-siRNA co-delivery system based on mesoporous silica and its effect on M2-type polarization of macrophages [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(5): 306-313. |
[7] | MENG Qingyan,LIU Jun. Research progress on factors related to the difficulty of orthodontic tooth movement [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(5): 340-345. |
[8] | WANG Min,JIANG Nan,ZHU Songsong. A novel biomimetic micro/nano hierarchical interface of titanium enhances adhesion, proliferation and osteogenic differentiation of bone marrow mesenchymal cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(4): 226-233. |
[9] | CUI Linna,JIANG Xiaowen,HUANG Huaqing,CHEN Jinyong. Kaempferol promotes osteogenic differentiation of mouse bone marrow mesenchymal cells under tension stress via the mTORC1 signaling pathway [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(4): 234-240. |
[10] | YUAN Quan. Dental implant treatment for patients with chronic kidney disease [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(3): 145-150. |
[11] | LIN Xi,LI Shaobing,DING Xianglong,XU Shulan. Application of the socket shield technique and its potential risks [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(2): 115-118. |
[12] | SHI Shaojie,LIU Xiangdong,SONG Yingliang. The effect of hypoglycemic drugs on bone metabolism and dental implantation in type 2 diabetes mellitus patients [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(2): 110-114. |
[13] | HU Kaijin, MA Zhen, WANG Yiming, DENG Tiange. New progress in the pathogenesis of traumatic temporomandibular joint ankylosis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(12): 793-800. |
[14] | WANG Yanlin,SUN Xiaojun. A study of the maxillary sinus lateral wall thickness using cone-beam CT [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(11): 761-765. |
[15] | JIN Zhuohua,XIE Lili,LI Yuyang,JIANG Jiayang,OU Yanzhen,MENG Weiyan. Research progress on the relationship between occlusal overload and peri-implantitis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(11): 782-786. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
This work is licensed under Creative Commons Attribution 3.0 License.