Journal of Prevention and Treatment for Stomatological Diseases ›› 2021, Vol. 29 ›› Issue (12): 809-819.doi: 10.12016/j.issn.2096-1456.2021.12.003

• Basic Study • Previous Articles     Next Articles

Prediction of the pharmacological characteristics and therapeutic mechanism of Tripterygium wilfordii in treating oral lichen planus based on network pharmacology

WU Zeyu1,2(),ZHAO Jin1,2,WANG Chen1,GONG Yi1,XUE Rui2,3()   

  1. 1. Department of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), Urumqi 830054, China
    2. Stomatology Disease Institute of Xinjiang Uyghur Autonomous Region, Urumqi 830054, China
    3. Department of Integrated Traditional Chinese Medicine and Oral Medicine, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), Urumqi 830054, China
  • Received:2020-12-05 Revised:2021-06-07 Online:2021-12-20 Published:2021-08-17
  • Contact: Rui XUE E-mail:wuzeyuyu@hotmail.com;xuerui322@126.com
  • Supported by:
    Natural Science Foundation of Xinjiang Province(2016D01C248)

Abstract:

Objective To explore the potential mechanism of the main active component Tripterygium wilfordii in the treatment of oral lichen planus based on network pharmacology. Methods The components of Tripterygium wilfordii and targets were searched through the Traditional Chinese Medicine system pharmacology database and analysis platform (TCMSP) and the Traditional Chinese Medicine integrated database (TCMID) databases. The related targets of oral lichen planus (OLP) were obtained through databases such as Gene Cards. The OLP targets were mapped by Venn analysis to the targets of Tripterygium wilfordii to screen out the common targets as the treatment of OLP targets of Tripterygium wilfordii. The Cytoscape software and STRING were used to construct a chemical component-target network and protein-protein interaction network, a network analyzer was used to compute the network topology properties, a cluster profiler software was used to analyze the GO classification enrichment analysis and KEGG signal path analysis, and a Tripterygium wilfordii chemical components-targets-pathway network diagram was constructed. Results Twenty-three components and 44 OLP treatmenttargets of Tripterygium wilfordii were obtained. The key active ingredients of Tripterygium wilfordii in the treatment of OLP are triptolide, kaempferol, and tangerine peel. The key targets include TNF and AKT1. The GO classification enrichment analysis obtained 63 GO terms, which are mainly involved in the leukocyte differentiation and reaction to lipopolysaccharides. The KEGG analysis identified 111 signaling pathways, which are mainly related to the TNF signaling pathway and IL17 signaling pathway. Conclusion Based on the network pharmacology, this study preliminarily revealed themain components, targets and pathways of Tripterygium wilfordii in the treatment of OLP. This study can provide a theoretical basis for further research to explore drugs with high activity and low toxicity to treat OLP from Tripterygium wilfordii.

Key words: Tripterygium wilfordii, triptolide, kaempferol, network pharmacology, pharmacological characteristics, active ingredient, OLP, target, therapeutic mechanism

CLC Number: 

  • R78

Table 1

The main active components and pharmacological parameters of Tripterygium wilfordii"

NO. ID Ingredient OB (%) DL
1 MOL000296 Hederagenin 36.91 0.75
2 MOL003182 (+)-medioresinol di-O-beta-D-glucopyranoside_qt 60.69 0.62
3 MOL003184 Neotriptophenolide 45.42 0.53
4
MOL003185
(1R, 4aR, 10aS)-5-hydroxy-1-(hydroxymethyl)-7-isopropyl-8-methoxy-1, 4a-dimethyl-4, 9, 10,
10a-tetrahydro-3H-phenanthren-2-one
48.84
0.38
5 MOL003187 Triptolide 51.29 0.68
6 MOL003196 Tryptophenolide 48.50 0.44
7 MOL003199 5, 8-Dihydroxy-7-(4-hydroxy-5-methyl-coumarin-3)-coumarin 61.85 0.54
8 MOL003217 Isoxanthohumol 56.81 0.39
9 MOL003225 Hypodiolide A 76.13 0.49
10 MOL003229 Triptinin B 34.73 0.32
11 MOL003231 Triptoditerpenic acid B 40.02 0.36
12 MOL003245 Triptonoditerpenic acid 42.56 0.39
13 MOL003248 Triptonoterpene 48.57 0.28
14 MOL003280 Triptonolide 49.51 0.49
15 MOL000358 Beta-sitosterol 36.91 0.75
16 MOL007415 [(2S)-2-[[(2S)-2-(benzoylamino)-3-phenylpropanoyl]amino]-3-phenylpropyl] acetate 58.02 0.52
17 MOL000449 Stigmasterol 43.83 0.76
18 MOL002058 Medioresil 57.20 0.62
19 MOL003283 (2R, 3R, 4S)-4-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-2, 3-dimethylol-tetralin-6-ol 66.51 0.39
20 MOL004443 Zhebeiresinol 58.72 0.19
21 MOL005828 Nobiletin 61.67 0.52
22 MOL000422 Kaempferol 41.88 0.24
23 MOL009386 3, 3′-bis-(3, 4-dihydro-4-hydroxy-6-methoxy)-2H-1-benzopyran 52.11 0.54

Figure 1

Venn diagram 44 common targets between OLP and Tripterygium wilfordii, OLP: oral lichen planus"

Table 2

Potential active ingredients and targets of Tripterygium wilfordii in the OLP treatment"

NO. Target Entrez ID NO. Target Entrez ID NO. Target Entrez ID NO. Target Entrez ID
1 CYP3A4 1576 12 TGFB1 7040 23 INSR 3643 34 CCR7 1236
2 TNF 7124 13 VCAM1 7412 24 DPP4 1803 35 CD86 942
3 CYP1B1 1545 14 AKT1 207 25 IL4 3565 36 NR1I2 8856
4 PTGS2 5743 15 FOS 2353 26 ICAM1 3383 37 CD80 941
5 MMP9 4318 16 CASP3 836 27 CYP1A1 1543 38 JUN 3725
6 SLC6A4 6532 17 IL23A 51561 28 RELA 5970 39 BAX 581
7 PPARG 5468 18 BCL2 596 29 TP53 7157 40 CD274 29126
8 CXCL8 3576 19 HMOX1 3162 30 CD1A 909 41 VEGFA 7422
9 NR3C1 2908 20 CASP8 841 31 CD40 958 42 SELE 6401
10 DEFB4A 1673 21 IFNG 3458 32 CYP1A2 1544 43 CD14 929
11 MMP1 4312 22 NOS2 4843 33 PLA2G4A 5321 44 IL2 3558

Figure 2

Tripterygium wilfordii chemical components-targets network diagram CYP3A4: cytochrome P450 3A4; TNF: tumor necrosis factor; CYP1B1: cytochrome P450 1B1; PTGS2: prostaglandin G/H synthase 2; MMP9: matrix metalloproteinase 9; PPARG: peroxisome proliferator-activated receptor gamma; DEFB4A: beta-defensin 4A; MMP1: matrix metalloproteinase 1; TGFB1: transforming growth factor beta 1; VCAM1: vascular cell adhesion protein 1; AKT1: RAC-alpha serine/threonine-protein kinase; FOS: proto-oncogene c-Fos; CASP3: caspase 3; IL23A: interleukin 23 subunit alpha; HMOX1: heme oxygenase 1; CASP8: caspase 8; IFNG: interferon gamma; NOS2: nitric oxide synthase 2; INSR: insulin receptor; DPP4: dipeptidyl peptidase 4; IL4: interleukin 4; ICAM1: intercellular adhesion molecule 1; CYP1A1: cytochrome P450 1A1; RELA: transcription factor p65; TP53: cellular tumor antigen p53; CYP1A2: cytochrome P450 1A2; CCR7: C-C chemokine receptor type 7; NR1I2: nuclear receptor subfamily 1 group I member 2; VEGFA: vascular endothelial growth factor A; SELE: E selectin; IL2: interleukin 2"

Table 3

Topological parameter analysis of Tripterygium wilfordii chemical component"

NO. Ingredient ID Degree BC CC TC NO. Ingredient ID Degree BC CC TC
1 MOL003187 24 0.160 0.511 0.141 13 MOL003182 2 0.000 0.384 0.957
2 MOL000422 24 0.143 0.504 0.161 14 MOL003184 2 0.000 0.384 0.957
3 MOL005828 12 0.036 0.428 0.277 15 MOL003196 2 0.000 0.384 0.957
4 MOL000358 9 0.028 0.417 0.300 16 MOL003225 2 0.000 0.384 0.587
5 MOL003199 5 0.006 0.398 0.478 17 MOL003245 2 0.000 0.384 0.957
6 MOL003185 3 0.001 0.389 0.710 18 MOL003280 2 0.000 0.384 0.957
7 MOL003217 3 0.001 0.389 0.696 19 MOL000449 2 0.000 0.384 0.957
8 MOL003229 3 0.001 0.389 0.710 20 MOL002058 2 0.000 0.384 0.957
9 MOL003231 3 0.001 0.389 0.710 21 MOL004443 2 0.000 0.384 0.957
10 MOL003248 3 0.002 0.389 0.710 22 MOL007415 2 0.000 0.384 0.957
11 MOL003283 3 0.002 0.389 0.696 23 MOL009386 2 0.000 0.384 0.957
12 MOL000296 2 0.000 0.384 0.957

Figure 3

Active components of the Tripterygium wilfordii treated OLP protein-protein interaction a: protein-protein interactions network; b: ranking of gene edge number in network; OLP: oral lichen planus; TNF: tumor necrosis factor; AKT1: RAC-alpha serine/threonine-protein kinase; JUN: transcription factor AP-1; TP53: cellular tumor antigen p53; IL4: interleukin 4; CXCL8: C-X-C motif chemokine ligand 8; ICAM1: intercellular adhesion molecule 1; RELA: transcription factor p65; VEGFA: vascular endothelial growth factor A; IFNG: interferon gamma; IL2: interleukin 2; MMP9: matrix metalloproteinase 9; PTGS2: prostaglandin G/H synthase 2; FOS: proto-oncogene c-Fos; HMOX1: heme oxygenase 1; PPARG: peroxisome proliferator-activated receptor gamma; TGFB1: transforming growth factor beta 1; CASP3: caspase 3; CASP8: caspase 8; MMP1: matrix metalloproteinase 1; VCAM1: vascular cell adhesion protein 1; CCR7: C-C chemokine receptor type 7; NOS2: nitric oxide synthase 2; SELE: E-selectin; NR3C1: glucocorticoid receptor"

Table 4

Analysis of the topological parameters of the core target of Tripterygium wilfordii in the OLP treatment"

NO. Gene symbol Gene name BC CC TC
1 TNF tumor necrosis factor 0.001 0.442 0.667
2 AKT1 AKT serine/threonine kinase 1 0.000 0.436 0.739
3 JUN Jun proto-oncogene, AP-1 transcription factor subunit 0.006 0.453 0.482
4 TP53 tumor protein p53 0.002 0.442 0.576
5 IL4 Interleukin 4 0.000 0.436 0.750
6 CXCL8 C-X-C motif chemokine ligand 8 0.000 0.436 0.750
7 ICAM1 intercellular cell adhesion molecule 1 0.000 0.436 0.739
8 RELA Transcription factor p65 0.001 0.442 0.667
9 VEGFA vascular endothelial growth factor A 0.000 0.436 0.750
10 IFNG Interferon gamma 0.000 0.436 0.750

Table 5

GO enrichment analysis results of potential targets of Tripterygium wilfordii for the OLP treatment (top ten of each items)"

GO-ID GO-term Type P FDR value Gene ratio Gene
GO: 0002521 Leukocyte differentiation BP <0.001 <0.001 0.431 TNF, MMP9, PPARG, etc.
GO: 0032496 Response to lipopolysaccharide BP <0.001 <0.001 0.409 TNF, PTGS2, CXCL8, etc.
GO: 0002237 Response to molecule of bacterial origin BP <0.001 <0.001 0.409 TNF, PTGS2, CXCL8, etc.
GO: 0042110 T cell activation BP <0.001 <0.001 0.409 TGFB1, VCAM1, AKT1, etc.
GO: 0007159 Leukocyte cell-cell adhesion BP <0.001 <0.001 0.386 TNF, TGFB1, VCAM1, etc.
GO: 1903037 Regulation of leukocyte cell-cell adhesion BP <0.001 <0.001 0.363 TNF, TGFB1, VCAM1, etc.
GO: 0045785 Positive regulation of cell-cell adhesion BP <0.001 <0.001 0.363 TNF, TGFB1, VCAM1, etc.
GO: 0022407 Regulation of cell-cell adhesion BP <0.001 <0.001 0.363 TNF, TGFB1, VCAM1, etc.
GO: 1903039 Positive regulation of leukocyte cell-cell adhesion BP <0.001 <0.001 0.340 TNF, TGFB1, VCAM1, etc.
GO: 0022409 Positive regulation of cell-cell adhesion BP <0.001 <0.001 0.340 TNF, TGFB1, VCAM1, etc.
GO: 0005126 Cytokine receptor binding MF <0.001 <0.001 0.250 TNF, CXCL8, DEFB4A, etc.
GO: 0046982 Protein heterodimerization activity MF <0.001 <0.001 0.205 PPARG, TGFB1, FOS, etc.
GO: 0020037 Heme binding MF <0.001 <0.001 0.159 CYP3A4, CYP1B1, PTGS2, etc.
GO: 0046906 Tetrapyrrole binding MF <0.001 <0.001 0.159 CYP3A4, CYP1B1, PTGS2, etc.
GO: 0016705 Oxidoreductase activity、acting on paired Donors,
with incorporation or reduction of molecular oxygen
MF <0.001 <0.001 0.159 CYP3A4, CYP1B1, PTGS2, etc.
GO: 0005125 Cytokine activity MF <0.001 <0.001 0.159 TNF, CXCL8, TGFB1, etc.
GO: 0004497 Monooxygenase activity MF <0.001 <0.001 0.114 CYP3A4, CYP1B1, NOS2, etc.
GO: 0002020 Protease binding MF <0.001 <0.001 0.114 TNF, CASP3, BCL2, etc.
GO: 0016712


Oxidoreductase activity、acting on paired donors, with
incorporation or reduction of Molecular oxygen、reduced
flavin or flavoprotein as one donor, and incorporation of
one atom of oxygen
MF


<0.001


<0.001


0.091


CYP3A4, CYP1B1, CYP1A1, etc.


GO: 0070330 Aromatase activity MF <0.001 <0.001 0.068 CYP1B1, CYP1A1, CYP1A2, etc.
GO: 0045121 Membrane raft CC <0.001 <0.001 0.273 TNF, PTGS2, SLC6A4, etc.
GO: 0098857 Membrane microdomain CC <0.001 <0.001 0.273 TNF, PTGS2, SLC6A4, etc.
GO: 0098589 Membrane region CC <0.001 <0.001 0.273 TNF, PTGS2, SLC6A4, etc.
GO: 0009897 External side of plasma membrane CC <0.001 <0.001 0.136 TNF, VCAM1, INSR, etc.
GO: 0098552 Side of membrane CC <0.001 <0.001 0.136 TNF, VCAM1, INSR, etc.
GO: 0005667 Transcription factor complex CC <0.001 <0.001 0.114 PPARG, FOS, RELA, etc.
GO: 0005901 Caveola CC <0.001 <0.001 0.091 PTGS2, HMOX1, INSR, etc.
GO: 0044853 Plasma membrane raft CC <0.001 <0.001 0.091 PTGS2, HMOX1, INSR, etc.
GO: 0090575 Polymerase Ⅱ transcription factor complex CC <0.001 <0.001 0.091 PPARG, FOS, TP53, etc.
GO: 0044798 Nuclear transcription factor complex CC <0.001 <0.001 0.091 PPARG, FOS, TP53, etc.

Figure 4

Enrichment and analysis of GO biological processes in potential targets of Tripterygium wilfordii for the OLP treatment GO: gene ontology; OLP: oral lichen planus"

Figure 5

Enrichment and analysis of GO molecular functions in potential targets of Tripterygium wilfordii for the OLP treatment GO: gene ontology; OLP: oral lichen planus"

Figure 6

Enrichment and analysis of GO cellular components in potential targets of Tripterygium wilfordii for the OLP treatment GO: gene ontology; OLP: oral lichen planus"

Table 6

KEGG enrichment analysis results of potential targets of Tripterygium wilfordii for OLP treatment (top 10 of each)"

KEGG-ID KEGG-term P Gene ratio Gene
hsa04657 IL17 signaling pathway <0.001 0.302 TNF, PTGS2, MMP9, etc.
hsa04933 AGE-RAGE signaling pathway in diabetic complications <0.001 0.302 TNF, CXCL8, TGFβ1, etc.
hsa05161 Hepatitis B <0.001 0.302 TNF, MMP9, CXCL8, etc.
hsa05167 Kaposi sarcoma-associated herpesvirus infection <0.001 0.302 PTGS2, CXCL8, AKT1, etc.
hsa04668 TNF signaling pathway <0.001 0.279 TNF, PTGS2, MMP9, etc.
hsa05152 Tuberculosis <0.001 0.279 TNF, TGFβ1, AKT1, etc.
hsa05142 Chagas disease (American trypanosomiasis) <0.001 0.256 TNF, CXCL8, TGFβ1, etc.
hsa04620 Toll-like receptor signaling pathway <0.001 0.256 TNF, CXCL8, AKT1, etc.
hsa05169 Epstein-Barr virus infection <0.001 0.256 TNF, AKT1, CASP3, etc.
hsa05166 Human T-cell leukemia virus 1 infection <0.001 0.256 TNF, TGFβ1, AKT1, etc.

Figure 7

KEGG enrichment analysis of potential targets of Tripterygium wilfordii for the OLP treatment KEGG: Kyoto Encyclopedia of Genes and Genomes; OLP: oral lichen planus"

Figure 8

Tripterygium wilfordii chemical component-target-pathway network diagram"

[1] 王安训. 口腔黏膜相关疾病免疫功能检测及意义[J]. 口腔疾病防治, 2021, 29(2):73-80. doi: 10.12016/j.issn.2096-1456.2021.02.001.
Wang AX. Detection and significance of immune function in oral mucosa-associated diseases[J]. J Prev Treatment Stomatol Dis, 2021, 29(2):73-80. doi: 10.12016/j.issn.2096-1456.2021.02.001.
[2] Carrozzo M, Porter S, Mercadante V, et al. Oral lichen planus: a disease or a spectrum of tissue reactions? Types, causes, diagnostic algorhythms, prognosis, management strategies[J]. Periodontol 2000, 2019, 80(1):105-125. doi: 10.1111/prd.12260.
doi: 10.1111/prd.12260 pmid: 31090143
[3] 林琳, 吴开慧, 王文梅. 氯喹/羟氯喹的作用机制及其在口腔疾病中的应用[J]. 口腔疾病防治, 2021, 29(3):198-201. doi: 10.12016/j.issn.2096-1456.2021.03.010.
Lin L, Wu KH, Wang WM. The mechanism of chloroquine/hydroxychloroquine and its application in stomatological diseases[J]. J Prev Treatment Stomatol Dis, 2021, 29(3):198-201. doi: 10.12016/j.issn.2096-1456.2021.03.010.
[4] Song C, Xu Y, Lu Y. Use of Tripterygium wilfordii Hook F for immune-mediated inflammatory diseases: progress and future prospects[J]. J Zhejiang Univ Sci B, 2020, 21(4):280-290. doi: 10.1631/jzus.B1900607.
doi: 10.1631/jzus.B1900607
[5] 田雅格, 苏晓慧, 刘立玲, 等. 近20年来雷公藤肝毒性研究概述[J]. 中国中药杂志, 2019, 44(16):3399-3405. doi: 10.19540/j.cnki.cjcmm.20190527.408.
Tian YG, Su XH, Liu LL, et al. Overview of hepatotoxicity studies on Tripterygium wilfordii in recent 20 years[J]. Chin J Chin Mater Med, 2019, 44(16):3399-3405. doi: 10.19540/j.cnki.cjcmm.20190527.408.
[6] Ye H, Wei J, Tang K, et al. Drug repositioning through network pharmacology[J]. Curr Top Med Chem, 2016, 16(30):3646-3656. doi: 10.2174/1568026616666160530181328.
doi: 10.2174/1568026616666160530181328
[7] Hu W, Fu W, Wei X, et al. A network pharmacology study on the active ingredients and potential targets of Tripterygium wilfordii Hook for treatment of rheumatoid arthritis[J]. Evid Based Complement Alternat Med, 2019: 5276865. doi: 10.1155/2019/5276865.
[8] Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible[J]. Nucleic Acids Res, 2017, 45(D1):D362-D368. doi: 10.1093/nar/gkw937.D1
doi: 10.1093/nar/gkw937
[9] Yu G. Cluster profiler: an universal enrichment tool for functional and comparative study[J]. Bio Rxiv, 2018: 256784. doi: 10.1101/256784.
[10] Chen SR, Dai Y, Zhao J, et al. A mechanistic overview of triptolide and celastrol, natural products from Tripterygium wilfordii Hook F[J]. Front Pharmacol, 2018, 9:104. doi: 10.3389/fphar.2018.00104.
doi: 10.3389/fphar.2018.00104
[11] Wang S, Zuo S, Liu Z, et al. Study on the efficacy and mechanism of triptolide on treating TNF transgenic mice with rheumatoid arthritis[J]. Biomed Pharmacother, 2018, 106:813-820. doi: 10.1016/j.biopha.2018.07.021.
doi: 10.1016/j.biopha.2018.07.021
[12] You L, Dong X, Ni B, et al. Triptolide induces apoptosis through Fas death and mitochondrial pathways in HepaRG cell line[J]. Front Pharmacol, 2018, 9:813. doi: 10.3389/fphar.2018.00813.
doi: 10.3389/fphar.2018.00813
[13] Sun YY, Xiao L, Wang D, et al. Triptolide inhibits viability and induces apoptosis in liver cancer cells through activation of the tumor suppressor gene p53[J]. Int J Oncol, 2017, 50(3):847-852. doi: 10.3892/ijo.2017.3850.
doi: 10.3892/ijo.2017.3850
[14] Xu YY, Wang DM, Liang HS, et al. The role of Th17/Treg axis in the Traditional Chinese Medicine intervention on immune-mediated inflammatory diseases: a systematic review[J]. Am J Chin Med, 2020, 48(3):535-558. doi: 10.1142/S0192415X20500275.
doi: 10.1142/S0192415X20500275
[15] 贾沛茹, 黄韵颖, 汪鹰, 等. 口腔扁平苔藓外周血中辅助性T细胞/调节性T细胞平衡与临床特征相关性分析[J]. 华西口腔医学杂志, 2018, 36(4):384-388. doi: 10.7518/hxkq.2018.04.007.
Jia PR, Huang YY, Wang Y, et al. Correlations between the T helper cell 17/regulatory T cells balance in peripheral blood of patients with oral lichen planus and clinical characteristics[J]. West Chin J Stomatol, 2018, 36(4):384-388. doi: 10.7518/hxkq.2018.04.007.
[16] Faust HJ, Zhang H, Han J, et al. IL-17 and immunologically induced senescence regulate response to injury in osteoarthritis[J]. J Clin Investig, 2020, 130(10):5493-5507. doi: 10.1172/JCI134091.
doi: 10.1172/JCI134091
[17] Salehi B, Martorell M, Arbiser JL, et al. Antioxidants: positive or negative actors?[J]. Biomolecules, 2018, 8(4):124. doi: 10.3390/biom8040124.
doi: 10.3390/biom8040124
[18] Ashrafizadeh M, Tavakol S, Ahmadi Z, et al. Therapeutic effects of kaempferol affecting autophagy and endoplasmic reticulum stress[J]. Phytother Res, 2020, 34(5):911-923. doi: 10.1002/ptr.6577.
doi: 10.1002/ptr.6577 pmid: 31829475
[1] ZHONG qijian,JIN Tingting,PENG Yu,CHEN Weixiong,LI Jinsong. The effect of silencing the endoplasmic reticulum stress-related protein calnexin on the proliferation, invasion, and migration of tongue squamous cell carcinoma cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(8): 535-540.
[2] CUI Linna,JIANG Xiaowen,HUANG Huaqing,CHEN Jinyong. Kaempferol promotes osteogenic differentiation of mouse bone marrow mesenchymal cells under tension stress via the mTORC1 signaling pathway [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(4): 234-240.
[3] HUANG Xiangya,CAI Yanling,WEI Xi. Full-cycle management of endodontic microsurgery [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(10): 649-655.
[4] TAO Qian,YANG Yaocheng. Logic and clinical significance of the new WHO classification of ameloblastoma in 2017 [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(7): 416-420.
[5] LI Xiaodong,MENG Jian. Application progress of recombinant human endostatin in the treatment of head and neck cancer [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(4): 267-272.
[6] PENG Haiyan,JIANG Xiaowen,HUANG Huaqing,CHEN Jinyong. The role of the mTORC1 signaling pathway during osteogenic differentiation of mouse bone marrow mesenchymal cells under tension stress [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(4): 219-223.
[7] YANG Yijie,GE Shuyun. Role and mechanism of microRNAs in oral lichen planus [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(11): 733-738.
[8] WANG Anxun. Epigenetic and oral squamous cell carcinoma [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(10): 613-622.
[9] JI Tong. Diagnosis and treatment of head and neck osteosarcoma [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(9): 545-550.
[10] GUO Xiao,DU Xinmei,CHENG Lei,ZHOU Xuedong,LI Mingyun. Research progress on the function and metabolism of d-alanine in bacteria [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(4): 264-267.
[11] HUANG Lihuan,JIANG Yingtong,OUYANG Kexiong,WU Lihong,YANG Xuechao. Research progress on the role and mechanism of miR-155 in the development of oral squamous cell carcinoma [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(12): 809-812.
[12] Shuangxi LIU, Shulan XU, Binping WANG, Zhuogeng CHEN. Effects of basic fibroblast growth factor combined with a collagen membrane on soft tissue defects vascularization in the hard palates of rats [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(7): 440-444.
[13] Xianhui LEI, Sen YANG. Clinical effect of combined treatment with Kangfuxin solution and dexamethasone on erosive oral lichen planus [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(6): 384-386.
[14] Siyu ZHAO, Shaobo OUYANG, Jun WANG, Zikun HUANG, Qing LUO, Lan LIAO. Differential expression of circular RNA in oral squamous cell carcinoma [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(2): 83-89.
[15] WANG Xing,MENG Jian. Clinical effect of iodine 125 seeds implantation combined with EGFR inhibitor for advanced squamous cell carcinoma in tongue base [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(11): 671-673.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. journal1, 2016, 24(1): 58 -60 .
[2] Juan LI,Ting HUANG,Wen XUE,Hai-yan LI. Clinical efficacy of basic periodontal therapy combined with local medication for erosive oral lichen planus[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(3): 162 -165 .
[3] Jian-na ZHANG,Shao-hai CHANG,Yu-shan YE,Ying-juan LU. Initial stability analysis of the torque-resisted orthodontic miniscrew anchorage[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(3): 137 -141 .
[4] Ming CHEN,Xi CHEN,Zhen-ting ZHANG. The precision comparison of the denture occlusal plane preparation by the occlusal plane plate between experienced and newly-graduated dentists[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(3): 173 -176 .
[5] Zhong-juan TAN,Yue-ping ZHAO,Yuan-yuan LUO. The research progress of dental pulp regeneration[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(6): 374 -377 .
[6] Lan LIAO, Lijun ZENG. Updated research on digitalization in aesthetic restoration[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(7): 409 -414 .
[7] Yan-fei CHENG,Yong-rong ZHONG. Study of the cellular growth inhibited by tetrandrine with the expression of β-catenin in oral squamous cell carcinoma cell line[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(8): 464 -468 .
[8] LI Chun,LI Yan-hong,LIU Juan. Application of probiotics for dental caries prevention in children[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(9): 558 -560 .
[9] Mingyu SUN, Hanjiang WU. Research progresses in occult lymph node metastasis of oral squamous cancer[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(1): 61 -65 .
[10] Nu MI,Ying GUO,Xiao-yu YANG. Clinical evaluation of anterior teeth aesthetic restoration with thin porcelain laminate veneer[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(10): 589 -593 .
This work is licensed under a Creative Commons Attribution 3.0 License.