Journal of Prevention and Treatment for Stomatological Diseases ›› 2021, Vol. 29 ›› Issue (12): 820-827.DOI: 10.12016/j.issn.2096-1456.2021.12.004
• Basic Study • Previous Articles Next Articles
CHEN Yue1(),WU Zeyu2,3,MO Yanli1,JING Yinghao1,LIU Yishan1,3(
)
Received:
2021-04-08
Revised:
2021-05-19
Online:
2021-12-20
Published:
2021-08-17
Contact:
Yishan LIU
Supported by:
陈越1(),吴泽钰2,3,貊燕丽1,敬英豪1,刘奕杉1,3(
)
通讯作者:
刘奕杉
作者简介:
陈越,医师,硕士研究生,Email:dentist- 基金资助:
CLC Number:
CHEN Yue,WU Zeyu,MO Yanli,JING Yinghao,LIU Yishan. Correlation between HLA-DQB1 and HLA-DRB1 gene polymorphisms and caries: a systematic review and Meta-analysis[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(12): 820-827.
陈越,吴泽钰,貊燕丽,敬英豪,刘奕杉. HLA-DQB1和HLA-DRB1基因多态性与龋病相关性的系统评价与Meta分析[J]. 口腔疾病防治, 2021, 29(12): 820-827.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.kqjbfz.com/EN/10.12016/j.issn.2096-1456.2021.12.004
Author and Year | Country | Sample | ethnicity | Age(Year) | Number of HLA alleles studied | Detection method | Number of case group | Number of control group | NOS score |
---|---|---|---|---|---|---|---|---|---|
Ali Hadi Fahad 2019[ | Iraq | Saliva | Europa | 12-15 | 5 | Not mention | 20 | 20 | 6 |
Bagherian 2008[ | Iran | Blood | Europa | 1-6 | 5 | PCR-SSP PCR-RFLP | 44 | 35 | 7 |
Guo 2017[ | China | Saliva | Mongolian | 0.6-2.5 | 18 | PCR-SSP | 122 | 206 | 8 |
Ozawa 2001[ | Japan | Saliva | Mongolian | 18-28 | 44 | PCR-SSOP | 38 | 62 | 6 |
Valarini 2012[ | Brazil | Saliva | Europa Negro | 15-19 | 5 | PCR-SSP | 99 | 65 | 6 |
Vries 1985[ | Netherlands | Blood | Europa | Not mention | 10 | Not mention | 33 | 26 | 7 |
Wang 2020[ | China | Saliva | Mongolian | 6-12 | 13 | PCR-SSP | 42 | 123 | 8 |
Yildiz 2009[ | Turkey | Blood | Europa | 9-17 | 6 | PCR-SSP | 46 | 19 | 6 |
Zhang 2017[ | China | Saliva | Mongolian | 3-6 | 13 | PCR-SSP | 40 | 40 | 8 |
Zhang 2018[ | China | Saliva | Europa Mongolian | 3-5 | 5 | PCR-SSP | 80 | 80 | 8 |
Table 1 Characteristics of the studies in the meta-analysis
Author and Year | Country | Sample | ethnicity | Age(Year) | Number of HLA alleles studied | Detection method | Number of case group | Number of control group | NOS score |
---|---|---|---|---|---|---|---|---|---|
Ali Hadi Fahad 2019[ | Iraq | Saliva | Europa | 12-15 | 5 | Not mention | 20 | 20 | 6 |
Bagherian 2008[ | Iran | Blood | Europa | 1-6 | 5 | PCR-SSP PCR-RFLP | 44 | 35 | 7 |
Guo 2017[ | China | Saliva | Mongolian | 0.6-2.5 | 18 | PCR-SSP | 122 | 206 | 8 |
Ozawa 2001[ | Japan | Saliva | Mongolian | 18-28 | 44 | PCR-SSOP | 38 | 62 | 6 |
Valarini 2012[ | Brazil | Saliva | Europa Negro | 15-19 | 5 | PCR-SSP | 99 | 65 | 6 |
Vries 1985[ | Netherlands | Blood | Europa | Not mention | 10 | Not mention | 33 | 26 | 7 |
Wang 2020[ | China | Saliva | Mongolian | 6-12 | 13 | PCR-SSP | 42 | 123 | 8 |
Yildiz 2009[ | Turkey | Blood | Europa | 9-17 | 6 | PCR-SSP | 46 | 19 | 6 |
Zhang 2017[ | China | Saliva | Mongolian | 3-6 | 13 | PCR-SSP | 40 | 40 | 8 |
Zhang 2018[ | China | Saliva | Europa Mongolian | 3-5 | 5 | PCR-SSP | 80 | 80 | 8 |
HLA allele subtype | No. of study | Test of correlation | Test of heterogeneity | References | |||||
---|---|---|---|---|---|---|---|---|---|
OR(95%CI) | P | χ2 | I2(%) | P | Model (F/R) | ||||
HLA-DQB1*02 | 5 | 0.52(0.29,0.93) | 0.03 | 0.26 | 59 | 0.04 | R | [8] [9] [10] [12] [17] | |
HLA-DQB1*03 | 3 | 1.02(0.64,1.64) | 0.92 | 0.32 | 0 | 0.85 | F | [9] [10] [17] | |
HLA-DQB1*04 | 4 | 1.28(0.78,2.11) | 0.33 | 0.23 | 0 | 0.97 | F | [8] [10] [12] [17] | |
HLA-DQB1*05 | 5 | 0.97(0.67,1.41) | 0.87 | 2.76 | 0 | 0.6 | F | [8] [9] [10] [12] [17] | |
HLA-DQB1*06 | 5 | 1.07(0.76,1.49) | 0.70 | 0.85 | 0 | 0.93 | F | [8] [9] [10] [12] [17] | |
HLA-DRB1*01 | 4 | 1.04(0.69,1.57) | 0.84 | 3.21 | 7 | 0.36 | F | [10] [13] [14] [16] | |
HLA-DRB1*03 | 4 | 1.24(0.83,1.86) | 0.29 | 2.57 | 0 | 0.46 | F | [10] [13] [14] [16] | |
HLA-DRB1*04 | 8 | 1.25(0.75,2.09) | 0.39 | 15.33 | 54 | 0.03 | R | [8] [9] [10] [12] [13] [14] [15] [16] | |
HLA-DRB1*07 | Overall | 6 | 0.73(0.35,1.52) | 0.40 | 0.41 | 56 | 0.05 | R | [10] [11] [13] [14] [15] [16] |
China | 3 | 0.48(0.24,0.97) | 0.04 | 0.19 | 47 | 0.15 | F | [10] [14] [16] | |
Other countries | 3 | 1.70(0.59,4.87) | 0.32 | 0.14 | 12 | 0.32 | F | [11] [13] [15] | |
HLA-DRB1*08 | 3 | 0.82(0.45,1.49) | 0.50 | 0.76 | 0 | 0.69 | F | [10] [14] [16] | |
HLA-DRB1*09 | 3 | 0.34(0.21,0.58) | <0.001 | 0.28 | 46 | 0.15 | F | [10] [14] [16] | |
HLA-DRB1*10 | 3 | 0.97(0.53,1.77) | 0.92 | 0.5 | 0 | 0.78 | F | [10] [14] [16] | |
HLA-DRB1*11 | Overall | 4 | 1.16(0.34,3.95) | 0.81 | 1.30 | 85 | <0.01 | R | [10] [14] [15] [16] |
Saliva | 3 | 2.26(1.46,3.52) | <0.001 | 0 | 0 | 0.79 | R | [10] [14] [16] | |
Blood | 1 | 0.09(0.12,0.34) | <0.001 | [15] | |||||
HLA-DRB1*12 | 3 | 0.80(0.52,1.25) | 0.33 | 0.51 | 0 | 0.78 | F | [10] [14] [16] | |
HLA-DRB1*13 | 3 | 2.96(2.03,4.33) | <0.001 | 0 | 0 | 0.81 | F | [10] [14] [16] | |
HLA-DRB1*14 | 3 | 2.01(1.36,2.97) | <0.001 | 0.02 | 11 | 0.32 | F | [10] [14] [16] | |
HLA-DRB1*15 | 3 | 1.15(0.77,1.71) | 0.50 | 0.25 | 0 | 0.88 | F | [10] [14] [16] | |
HLA-DRB1*16 | 2 | 1.45(0.32,6.48) | 0.63 | 0.87 | 74 | 0.05 | R | [14] [16] |
Table 2 Meta-analysis of the correlation between HLA gene polymorphisms and dental caries
HLA allele subtype | No. of study | Test of correlation | Test of heterogeneity | References | |||||
---|---|---|---|---|---|---|---|---|---|
OR(95%CI) | P | χ2 | I2(%) | P | Model (F/R) | ||||
HLA-DQB1*02 | 5 | 0.52(0.29,0.93) | 0.03 | 0.26 | 59 | 0.04 | R | [8] [9] [10] [12] [17] | |
HLA-DQB1*03 | 3 | 1.02(0.64,1.64) | 0.92 | 0.32 | 0 | 0.85 | F | [9] [10] [17] | |
HLA-DQB1*04 | 4 | 1.28(0.78,2.11) | 0.33 | 0.23 | 0 | 0.97 | F | [8] [10] [12] [17] | |
HLA-DQB1*05 | 5 | 0.97(0.67,1.41) | 0.87 | 2.76 | 0 | 0.6 | F | [8] [9] [10] [12] [17] | |
HLA-DQB1*06 | 5 | 1.07(0.76,1.49) | 0.70 | 0.85 | 0 | 0.93 | F | [8] [9] [10] [12] [17] | |
HLA-DRB1*01 | 4 | 1.04(0.69,1.57) | 0.84 | 3.21 | 7 | 0.36 | F | [10] [13] [14] [16] | |
HLA-DRB1*03 | 4 | 1.24(0.83,1.86) | 0.29 | 2.57 | 0 | 0.46 | F | [10] [13] [14] [16] | |
HLA-DRB1*04 | 8 | 1.25(0.75,2.09) | 0.39 | 15.33 | 54 | 0.03 | R | [8] [9] [10] [12] [13] [14] [15] [16] | |
HLA-DRB1*07 | Overall | 6 | 0.73(0.35,1.52) | 0.40 | 0.41 | 56 | 0.05 | R | [10] [11] [13] [14] [15] [16] |
China | 3 | 0.48(0.24,0.97) | 0.04 | 0.19 | 47 | 0.15 | F | [10] [14] [16] | |
Other countries | 3 | 1.70(0.59,4.87) | 0.32 | 0.14 | 12 | 0.32 | F | [11] [13] [15] | |
HLA-DRB1*08 | 3 | 0.82(0.45,1.49) | 0.50 | 0.76 | 0 | 0.69 | F | [10] [14] [16] | |
HLA-DRB1*09 | 3 | 0.34(0.21,0.58) | <0.001 | 0.28 | 46 | 0.15 | F | [10] [14] [16] | |
HLA-DRB1*10 | 3 | 0.97(0.53,1.77) | 0.92 | 0.5 | 0 | 0.78 | F | [10] [14] [16] | |
HLA-DRB1*11 | Overall | 4 | 1.16(0.34,3.95) | 0.81 | 1.30 | 85 | <0.01 | R | [10] [14] [15] [16] |
Saliva | 3 | 2.26(1.46,3.52) | <0.001 | 0 | 0 | 0.79 | R | [10] [14] [16] | |
Blood | 1 | 0.09(0.12,0.34) | <0.001 | [15] | |||||
HLA-DRB1*12 | 3 | 0.80(0.52,1.25) | 0.33 | 0.51 | 0 | 0.78 | F | [10] [14] [16] | |
HLA-DRB1*13 | 3 | 2.96(2.03,4.33) | <0.001 | 0 | 0 | 0.81 | F | [10] [14] [16] | |
HLA-DRB1*14 | 3 | 2.01(1.36,2.97) | <0.001 | 0.02 | 11 | 0.32 | F | [10] [14] [16] | |
HLA-DRB1*15 | 3 | 1.15(0.77,1.71) | 0.50 | 0.25 | 0 | 0.88 | F | [10] [14] [16] | |
HLA-DRB1*16 | 2 | 1.45(0.32,6.48) | 0.63 | 0.87 | 74 | 0.05 | R | [14] [16] |
[1] |
Li X, Liu D, Sun Y, et al. Association of genetic variants in enamel-formation genes with dental caries: a meta-and gene-cluster analysis[J]. Saudi J Biol Sci, 2021, 28(3):1645-1653. doi: 10.1016/j.sjbs.2020.11.071.
DOI URL |
[2] |
Pang L, Wang K, Tao Y, et al. A new model for caries risk prediction in teenagers using a machine learning algorithm based on environmental and genetic factors[J]. Front Genet, 2021, 12:636867. doi: 10.3389/fgene.2021.636867.
DOI URL |
[3] | Olszowski T, Milona M, Janiszewska-Olszowska J, et al. FCN1 polymorphisms are not the markers of dental caries susceptibility in Polish children: a case-control study[J]. Oral Dis, 2021: 13806. doi: 10.1111/odi.13806. |
[4] |
Kulski JK. Long noncoding RNA HCP5, a hybrid HLA class I endogenous retroviral gene: structure, expression, and disease associations[J]. Cells, 2019, 8(5):480. doi: 10.3390/cells8050480.
DOI URL |
[5] |
Zhou C, Xu M, Xiao Z, et al. Distribution of HLA-DQA1,-DQB1 and -DRB1 genes and haplotypes in Han, Uyghur, Kazakh and Hui populations inhabiting Xinjiang Uyghur Autonomous Region, China[J]. Int J Immunogenet, 2021, 48(3):229-238. doi: 10.1111/iji.12529.
DOI URL |
[6] |
Hajjej A, Almawi WY, Stayoussef M, et al. Association of HLA-DRB1 and-DQB1 alleles with type 1 (autoimmune) diabetes in African Arabs: systematic review and meta-analysis[J]. Immunol Invest, 2019, 48(2):130-146. doi: 10.1080/08820139.2018.1493498.
DOI URL |
[7] | Bennabi M, Gaman A, Delorme R, et al. HLA-class II haplotypes and autism spectrum disorders[J]. Sci Rep, 2018, 8(1):1-8. doi: 10.1038/s41598-018-25974-9. |
[8] | Fahad AH, Radhi NM. Dental caries status in relation to human leukocyte antigen class II genotype (DQ and DR) among institutionalized autistic adolescents in Baghdad city, Iraq[J]. J Res Med Dent Sci, 2019, 7(4):8-12. |
[9] |
Bagherian A, Nematollahi H, Afshari JT, et al. Comparison of allele frequency for HLA-DR and HLA-DQ between patients with ECC and caries-free children[J]. J Indian Soc Pedod Prev Dent, 2008, 26(1):18-21. doi: 10.4103/0970-4388.40316.
URL PMID |
[10] | 郭冉. HLA-DRB1, DQB1等位基因与乌鲁木齐市儿童龋病易感性的相关性研究[D]. 乌鲁木齐: 新疆医科大学, 2017. |
Guo R. Association between HLA-DRB1, DQB1 alleles and susceptibility to dental caries in children in Urumqi[D]. Urumqi: Xinjiang Medical University, 2017. | |
[11] | Ozawa Y, Chiba J, Matsusaka T, et al. The association of caries experience with HLA Class II allele frequencies in young Japanese adults[J]. J Dent Health, 2001, 51(3):298-304. |
[12] |
Valarini N, Maciel SM, Moura SK, et al. Association of dental caries with HLA class II allele in Brazilian adolescents[J]. Caries Res, 2012, 46(6):530-535. doi: 10.1159/000341188.
DOI URL PMID |
[13] |
De Vries RP, Zeylemaker P, Van PH, et al. Lack of association between HLA-DR antigens and dental caries[J]. Tissue Antigens, 1985, 25(3):173-174. doi: 10.1111/j.1399-0039.1985.tb00432.x.
URL PMID |
[14] | Wang L, Li B, Tie X, et al. Association between HLA-DRB1* allele polymorphism and caries susceptibility in Han Chinese children and adolescents in the Xinjiang Uygur Autonomous Region[J]. J Int Med Res, 2020, 48(4):300060519893852. doi: 10.1177/0300060519893852. |
[15] | Yildiz M, Pirim I, Bayindir YZ, et al. The association of HLA Class I and II antigens in teenagers with caries experience[J]. Eurasian J Med, 2009, 41(3):146-148. |
[16] | 张瑞涵, 刘佳, 郭冉, 等. 新疆维吾尔族儿童龋病与HLA-DRB1等位基因多态性的相关性研究[J]. 口腔医学研究, 2017, 33(4):378-381. doi: 10.13701/j.cnki.kqyxyj.2017.04.008. |
Zhang RH, Liu J, Guo R, et al. Study on the association between caries and HLA-DRB1 allele polymorphism in Uygur children in Xinjiang[J]. J Oral Sci Res, 2017, 33(4):378-381. doi: 10.13701/j.cnki.kqyxyj.2017.04.008. | |
[17] | 张瑞涵, 李小兵, 王丽萍, 等. 新疆维吾尔族和汉族儿童龋病与人类白细胞抗原-DQB1 等位基因多态性的相关性研究[J]. 华西口腔医学杂志, 2018, 36(1):4-8. doi: 10.7518/hxkq.2018.01.002. |
Zhang RH, Li XB, Wang LP, et al. Association between the dental caries and the human leucocyte antigen DQB1 allele polymorphisms among the Uygur and Han children in Xinjiang[J]. West Chin J Stomatol, 2018, 36(1):4-8. doi: 10.7518/hxkq.2018.01.002. | |
[18] |
Ortiz AS, Tomazoni F, Knorst JK, et al. Influence of socioeconomic inequalities on levels of dental caries in adolescents: a cohort study[J]. Int J Paediatric Dent, 2020, 30(1):42-49. doi: 10.1111/ipd.12572.
DOI URL |
[19] |
Chen KJ, Gao SS, Duangthip D, et al. Prevalence of early childhood caries among 5-year-old children: a systematic review[J]. J Investig Clin Dent, 2019, 10(1):e12376. doi: 10.1111/jicd.12376.
DOI URL |
[20] |
Zou J, Meng M, Law CS, et al. Common dental diseases in children and malocclusion[J]. Int J Oral Sci, 2018, 10(1):1-7. doi: 10.1038/s41368-018-0012-3.
DOI URL |
[21] |
Sharifi R, Jahedi S, Mozaffari HR, et al. Association of LTF, ENAM, and AMELX polymorphisms with dental caries susceptibility: a meta-analysis[J]. BMC Oral Health, 2020, 20(1):132. doi: 10.1186/s12903-020-01121-7.
DOI URL |
[1] | SHAN Chao,WANG Tingting,ZHAO Jin. Research progress on the correlation between interleukin-18 and chronic periodontitis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(7): 485-489. |
[2] | HAO Siyuan,WANG Jiahe,ZHANG Xiaoqi,ZOU Jing,WANG Yan. Efficacy and safety of Bifidobacteria in preventing caries: a systematic review and meta-analysis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(4): 241-248. |
[3] | ZHOU Qingnan,SHANG Jiajian. Research progress on the relationship between the changes in microbial community composition of plaque and dental caries in children [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(4): 267-272. |
[4] | LI Yuhan,LI Jiaxin,ZHANG Shiming,ZHANG Yaohua,LI Yuqing,ZENG Jumei. Research progress on Streptococcus mutans phages in the prevention of dental caries [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(3): 184-188. |
[5] | DONG Jingbo,LI Zhenzhen,LIU Chenxi,SHI Peikai. Meta-analysis of the effect of platelet-rich fibrin in alveolar ridge preservation [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(2): 99-105. |
[6] | XU Tengfei,CHEN Bin,AO Huizhi,SUN Weibin,WU WenLei. Effect of the antimicrobial photodynamic therapy in the treatment of periodontitis in type 2 diabetes mellitus: a systematic review and meta-analysis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(11): 752-760. |
[7] | WANG Shikui,SONG Qinggao,LAN Xuejiao. Research progress on MAFB gene polymorphism and nonsyndromic cleft lip and palate [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(1): 61-64. |
[8] | HUANG Shaohong,WU Linmei. The prevalence of dental caries in urban areas is lower than that in rural areas--analysis of changes in the epidemiological characteristics of caries in urban and rural areas [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(5): 273-278. |
[9] | HE Yuanli,REN Biao,CHEN Xuan,ZOU Ling. Mechanism research of srtA gene on the oxidation tolerance of Streptococcus mutans [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(5): 292-297. |
[10] | WU Hongyu,MA Xiaoxin,LU Haixia,FENG Xiping,GU Qin,YE Wei,XIE Yingxin,XIE Danshu,WANG Wenji. Investigation of dental caries and periodontal conditions in maintenance hemodialysis patients [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(5): 313-317. |
[11] | LIU Haotian,LI Huihui,LIU Shanshan. Research progress on the relationship between enamel-related gene polymorphisms and caries susceptibility [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(2): 123-126. |
[12] | WANG Kaixin,WANG Xiaochun,ZHANG Lu. Advances in the clinical application of imaging detection for caries [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(11): 744-748. |
[13] | DU Xinya,LI Xiaoyu,XIE Chun,WU Bin,SONG Guangbao,DU Ye. Detection of MSX1 gene mutations in patients with congenital tooth loss in Van der Woude syndrome [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(1): 47-51. |
[14] | LI Jiatong,ZHOU Xuedong,XU Xin,WANG Yan. Research progress of probiotics in the prevention and treatment of oral infectious diseases [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(9): 598-601. |
[15] | FU Zhuohui,DENG Jiaxin,CHEN Yuan,WANG Yan. Research progress into probiotics for the prevention of dental caries [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(9): 603-608. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
This work is licensed under Creative Commons Attribution 3.0 License.