Journal of Prevention and Treatment for Stomatological Diseases ›› 2021, Vol. 29 ›› Issue (12): 854-858.DOI: 10.12016/j.issn.2096-1456.2021.12.009
• Review Articles • Previous Articles Next Articles
YAN Shanyu(),MEI Hongxiang,LI Juan(
)
Received:
2020-08-22
Revised:
2021-06-30
Online:
2021-12-20
Published:
2021-08-17
Contact:
Juan LI
Supported by:
通讯作者:
李娟
作者简介:
颜杉钰,主治医师,硕士,Email: 基金资助:
CLC Number:
YAN Shanyu,MEI Hongxiang,LI Juan. Role of mesenchymal stem cells migration in bone injury repair[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(12): 854-858.
颜杉钰,梅宏翔,李娟. 间充质干细胞迁移在骨组织损伤修复中的作用[J]. 口腔疾病防治, 2021, 29(12): 854-858.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.kqjbfz.com/EN/10.12016/j.issn.2096-1456.2021.12.009
[1] | Zhou Q, Yang C, Yang P. The promotional effect of mesenchymal stem cell homing on bone tissue regeneration[J]. Curr Stem Cell Res Ther, 2017, 12(5):365-376. doi: 10.2174/1574888X10666150211160604. |
[2] |
Lin H, Sohn J, Shen H, et al. Bone marrow mesenchymal stem cells: aging and tissue engineering applications to enhance bone healing[J]. Biomaterials, 2019, 203:96-110. doi: 10.1016/j.biomaterials.2018.06.026.
DOI URL |
[3] |
Tang Y, Wu X, Lei W, et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation[J]. Nat Med, 2009, 15(7):757-765. doi: 10.1038/nm.1979.
DOI URL PMID |
[4] |
Haasters F, Docheva D, Gassner C, et al. Mesenchymal stem cells from osteoporotic patients reveal reduced migration and invasion upon stimulation with BMP-2 or BMP-7[J]. Biochem Biophys Res Commun, 2014, 452(1):118-123. doi: 10.1016/j.bbrc.2014.08.055.
DOI URL |
[5] |
Fujita T, Azuma Y, Fukuyama R, et al. Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling[J]. J Cell Biol, 2004, 166(1):85-95. doi: 10.1083/jcb.200401138.
DOI URL |
[6] |
Cai SX, Liu AR, He HL, et al. Stable genetic alterations of beta-catenin and ROR2 regulate the Wnt pathway, affect the fate of MSCs[J]. J Cell Physiol, 2014, 229(6):791-800. doi: 10.1002/jcp.24500.
DOI URL |
[7] |
Wang J, Liu D, Guo B, et al. Role of biphasic calcium phosphate ceramic-mediated secretion of signaling molecules by macrophages in migration and osteoblastic differentiation of MSCs[J]. Acta Biomater, 2017, 51:447-460. doi: 10.1016/j.actbio.2017.01.059.
DOI URL |
[8] |
Sandberg OH, Tatting L, Bernhardsson ME, et al. Temporal role of macrophages in cancellous bone healing[J]. Bone, 2017, 101:129-133. doi: 10.1016/j.bone.2017.04.004.
DOI URL PMID |
[9] |
Pajarinen J, Lin T, Gibon E, et al. Mesenchymal stem cell-macrophage crosstalk and bone healing[J]. Biomaterials, 2019, 196:80-89. doi: 10.1016/j.biomaterials.2017.12.025.
DOI URL PMID |
[10] |
Wasnik S, Rundle CH, Baylink DJ, et al. 1,25-Dihydroxyvitamin D suppresses M1 macrophages and promotes M2 differentiation at bone injury sites[J]. JCI Insight, 2018, 3(17):e98773. doi: 10.1172/jci.insight.98773.
DOI URL |
[11] |
Lim RZ, Li L, Yong EL, et al. STAT-3 regulation of CXCR4 is necessary for the prenylflavonoid Icaritin to enhance mesenchymal stem cell proliferation, migration and osteogenic differentiation[J]. BBA-Gen Subjects, 2018, 1862(7):1680-1692. doi: 10.1016/j.bbagen.2018.04.016.
DOI URL PMID |
[12] |
Sanghani-Kerai A, Coathup M, Samazideh S, et al. Osteoporosis and ageing affects the migration of stem cells and this is ameliorated by transfection with CXCR4[J]. Bone Joint Res, 2017, 6(6):358-365. doi: 10.1302/2046-3758.66.BJR-2016-0259.R1.
DOI URL PMID |
[13] |
Li A, Xia X, Yeh J, et al. PDGF-AA promotes osteogenic differentiation and migration of mesenchymal stem cell by down-regulating PDGFR alpha and derepressing BMP-Smad1/5/8 signaling[J]. PLoS One, 2014, 9(12):e113785. doi: 10.1371/journal.pone.0113785.
DOI URL |
[14] |
Wang Y, Xu J, Zhang X, et al. TNF-alpha-induced LRG1 promotes angiogenesis and mesenchymal stem cell migration in the subchondral bone during osteoarthritis[J]. Cell Death Dis, 2017, 8(3):e2715. doi: 10.1038/cddis.2017.129.
DOI URL |
[15] |
Du Z, Wang L, Zhao Y, et al. Sympathetic denervation-induced MSC mobilization in distraction osteogenesis associates with inhibition of MSC migration and osteogenesis by norepinephrine/adrb3[J]. PLoS One, 2014, 9(8):e105976. doi: 10.1371/journal.pone.0105976.
DOI URL |
[16] |
Kitaori T, Ito H, Schwarz EM, et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model[J]. Arthritis Rheum, 2009, 60(3):813-823. doi: 10.1002/art.24330.
DOI URL |
[17] |
Argentati C, Morena F, Tortorella I, et al. Insight into mechanobiology: how stem cells feel mechanical forces and orchestrate biological functions[J]. Int J Mol Sci, 2019, 20(21):5337. doi: 10.3390/ijms20215337.
DOI URL |
[18] |
Frith JE, Kusuma GD, Carthew J, et al. Mechanically-sensitive miRNAs bias human mesenchymal stem cell fate via mTOR signalling[J]. Nat Commun, 2018, 9(1):257. doi: 10.1038/s41467-017-02486-0.
DOI URL |
[19] |
Plotnikov SV, Pasapera AM, Sabass B, et al. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration[J]. Cell, 2012, 151(7):1513-1527. doi: 10.1016/j.cell.2012.11.034.
DOI URL PMID |
[20] |
Kumar S, Ponnazhagan S. Bone homing of mesenchymal stem cells by ectopic alpha 4 integrin expression[J]. Faseb J, 2007, 21(14):3917-3927. doi: 10.1096/fj.07-8275com.
DOI URL |
[21] |
Lin C, Tao B, Deng Y, et al. Matrix promote mesenchymal stromal cell migration with improved deformation via nuclear stiffness decrease[J]. Biomaterials, 2019, 217:119300. doi: 10.1016/j.biomaterials.2019.119300.
DOI URL |
[22] |
Dejaeger M, Bohm AM, Dirckx N, et al. Integrin-linked kinase regulates bone formation by controlling cytoskeletal organization and modulating BMP and Wnt signaling in osteoprogenitors[J]. J Bone Miner Res, 2017, 32(10):2087-2102. doi: 10.1002/jbmr.3190.
DOI URL PMID |
[23] |
Ichida M, Yui Y, Yoshioka K, et al. Changes in cell migration of mesenchymal cells during osteogenic differentiation[J]. FEBS Lett, 2011, 585(24):4018-4024. doi: 10.1016/j.febslet.2011.11.014.
DOI URL |
[24] |
Lien CY, Ho KC, Lee OK, et al. Restoration of bone mass and strength in glucocorticoid-treated mice by systemic transplantation of CXCR4 and cbfa-1 co-expressing mesenchymal stem cells[J]. J Bone Miner Res, 2009, 24(5):837-848. doi: 10.1359/jbmr.081257.
DOI URL |
[25] |
Jiang X, Xu C, Shi H, et al. PTH1-34 improves bone healing by promoting angiogenesis and facilitating MSCs migration and differentiation in a stabilized fracture mouse model[J]. PLoS One, 2019, 14(12):e0226163. doi: 10.1371/journal.pone.0226163.
DOI URL |
[26] |
Sheyn D, Shapiro G, Tawackoli W, et al. PTH induces systemically administered mesenchymal stem cells to migrate to and regenerate spine injuries[J]. Mol Ther, 2016, 24(2):318-330. doi: 10.1038/mt.2015.211.
DOI URL |
[27] |
He J, Meng G, Yao R, et al. The essential role of inorganic substrate in the migration and osteoblastic differentiation of mesenchymal stem cells[J]. J Mech Behav Biomed Mater, 2016, 59:353-365. doi: 10.1016/j.jmbbm.2016.02.013.
DOI URL |
[28] |
Wang B, Guo Y, Chen X, et al. Nanoparticle-modified chitosan-agarose-gelatin scaffold for sustained release of SDF-1 and BMP-2[J]. Int J Nanomedicine, 2018, 13:7395-7408. doi: 10.2147/IJN.S180859.
DOI URL |
[29] |
Kamali A, Oryan A, Hosseini S, et al. Cannabidiol-loaded microspheres incorporated into osteoconductive scaffold enhance mesenchymal stem cell recruitment and regeneration of critical-sized bone defects[J]. Mater Sci Eng C Mater Biol Appl, 2019, 101:64-75. doi: 10.1016/j.msec.2019.03.070.
DOI URL |
[30] |
Zhang J, Liu X, Li H, et al. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway[J]. Stem Cell Res Ther, 2016, 7(1):136. doi: 10.1186/s13287-016-0391-3.
DOI URL |
[31] |
Marinova-Mutafchieva L, Williams RO, Funa K, et al. Inflammation is preceded by tumor necrosis factor-dependent infiltration of mesenchymal cells in experimental arthritis[J]. Arthritis Rheum, 2002, 46(2):507-513. doi: 10.1002/art.10126.
DOI URL |
[32] | Tso GH, Law HK, Tu W, et al. Phagocytosis of apoptotic cells modulates mesenchymal stem cells osteogenic differentiation to enhance IL-17 and RANKL expression on CD4+ T cells[J]. Stem Cells, 2010, 28(5):939-954. doi: 10.1002/stem.406. |
[1] | ZHONG qijian,JIN Tingting,PENG Yu,CHEN Weixiong,LI Jinsong. The effect of silencing the endoplasmic reticulum stress-related protein calnexin on the proliferation, invasion, and migration of tongue squamous cell carcinoma cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(8): 535-540. |
[2] | CHEN Zetao,LIN Yixiong,YANG Jieting,HUANG Baoxin,CHEN Zhuofan. Research and development concept of barrier membranes based on “ immune microenvironment regulation” [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(8): 505-514. |
[3] | ZUO Xinhui,LI Jun,HAN Xiangzhen,LIU Xiaoyuan,HE Huiyu. Effects of hypoxia inducible factor-1α on osteogenic differentiation and angiogenesis related factors of bone marrow mesenchymal stem cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(7): 449-455. |
[4] | WANG Min,JIANG Nan,ZHU Songsong. A novel biomimetic micro/nano hierarchical interface of titanium enhances adhesion, proliferation and osteogenic differentiation of bone marrow mesenchymal cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(4): 226-233. |
[5] | LI Tianle,CHANG Xinnan,QIU Xutong,FU Di,ZHANG Tao. Effect of mechanical stimulation on the differentiation of stem cells in periodontal bone tissue engineering [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(4): 273-278. |
[6] | CHEN Zece,LONG Qian,GUAN Xiaoyan,LIU Jianguo. Research progress on microRNA-21 in regulating osteoclast and osteogenic differentiation in orthodontic treatment [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(3): 211-216. |
[7] | SHI Weiwei,DING Yi,TIAN Weidong,GUO Shujuan. Exosomes derived from lipopolysaccharide-preconditioned dental folic cells regulate osteogenic differentiation of periodontal ligament cell in periodontitis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(2): 81-87. |
[8] | HU Kaijin, MA Zhen, WANG Yiming, DENG Tiange. New progress in the pathogenesis of traumatic temporomandibular joint ankylosis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(12): 793-800. |
[9] | LI Qi, WANG He, HUANG Zijun, HAN Qianqian. Research progress on the regulatory mechanism of estrogen in periodontal ligament cells repair and the reconstruction of periodontal tissue [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(11): 787-792. |
[10] | SUN Jingxuan,LI Yanping,PAN Shuang,HE Lina,SUN Xiangyu,ZHANG Shuang,NIU Yumei. Effects of graphene on the proliferation, migration and morphology of dental pulp stem cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(10): 656-662. |
[11] | BIN Zhiwen,WANG Fang,HOU Jinsong. Research progress on the reconstruction of mandibular defects in adolescents [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(10): 711-715. |
[12] | YANG Jin,WU Feifei,GAO Qinghong,LI Xiaoyu,MANABU Kato,CHENG Ran,ZHOU Hongmei. Effects of TGF-β1 on the migration of oral cancer-associated fibroblasts in two and three dimensional co-culture models [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(9): 562-568. |
[13] | XU Hongwei,HAN Bing. Research progress in mechanical strength enhancement methods of jaw tissue engineering scaffolds [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(9): 600-606. |
[14] | CHEN Songling,ZHU Shuangxi. The role of the membrane of the maxillary sinus in space osteogenesis under the sinus floor after elevation of the sinus floor [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(8): 477-486. |
[15] | QIN Qing,SONG Yang,LIU Jia,LI Qiang. Effects of casein kinase 2 interacting protein-1 on the osteogenic differentiation ability of human periodontal ligament stem cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(7): 421-426. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
This work is licensed under Creative Commons Attribution 3.0 License.