Journal of Prevention and Treatment for Stomatological Diseases ›› 2019, Vol. 27 ›› Issue (5): 280-286.doi: 10.12016/j.issn.2096-1456.2019.05.002

• Expert Forum • Previous Articles     Next Articles

Recent advances in the application of quaternary ammonium compounds in biomedical materials

JIAO Yang1,CHEN Jihua2,()   

  1. 1. Department of Stomatology, 7th Medical Center of PLA General Hospital, Beijing 100700, China
    2. State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China;
  • Received:2018-11-22 Revised:2018-12-24 Online:2019-05-20 Published:2019-05-20
  • Contact: Jihua CHEN E-mail:jhchen@fmmu.edu.cn

Abstract:

Microbial infections affect people worldwide. Quaternary ammonium salts serve antibacterial, antifungal, antiviral, anti-matrix metalloproteinase and polymerization functions. While the modification of biomaterials with quaternary ammonium salts cannot affect the physical or chemical properties of the biomaterials, this process can confer them with stable biological activity. Currently, quaternary ammonium salts are widely used in the development of functional orthopedic materials, sutures, dressings and dental materials, and the idea of modifying biomedical materials with quaternary ammonium salts has become the most promising, e.g., for preparing antimicrobial biomaterials. Recent studies have found that quaternary ammonium salt-modified antimicrobial monomers are cytotoxic. Therefore, it is of great significance to explore the cytotoxic mechanism of quaternary ammonium salt-modified antimicrobial monomers and determine possible cytoprotective measures for improving the biological safety of these antimicrobial resin-based materials and expanding their clinical applications. In addition, further validation of the clinical efficacy of these biomaterials is particularly important for accurately evaluating the clinical prospects of these biomaterials. Based on a literature review, this paper summarizes the applications and toxicity of biomedical materials modified with quaternary ammonium salts.

Key words: Quaternary ammonium compound, Antibacterial, Orthopedics-related materials, Sutures, Wound dressings, Dental materials, Cytotoxicity, Matrix metalloproteinase

CLC Number: 

  • R78

Figure 1

Schematic illustration of the use of quaternary ammonium compounds in antimicrobial biomedical materials"

Table 1

MIC and MBC of MDPB against several common oral pathogens μg/mL"

细菌 MDPB
MIC MBC
变形链球菌 ATCC 25175 2.4 4.8
粘性放线菌 ATCC 15987 4.8 9.6
乳酸杆菌 ATCC 393 2.4 9.6
金黄色葡萄球菌 ATCC 29213 1.2 2.4
血链球菌ATCC 10556 4.8 4.8
牙龈卟啉单胞菌ATCC 33277 1.2 1.2
产黑普氏菌 ATCC 25261 2.4 9.6

Table 2

MIC and MBC of MAE-DB and MAE-HB against several common oral pathogens μg/mL"

细菌 MAE-DB MAE-HB
MIC MIC MBC MBC
变形链球菌 UA159 6.1 12.2 6.1 12.2
粘性放线菌 ATCC15987 6.1 12.2 24.4 48.8
嗜酸乳杆菌 ATCC393 6.1 12.2 3.1 6.2
金黄色葡萄球菌 ATCC29213 12.2 24.4 24.4 48.8
血栓性链球菌ATCC6715 12.2 1.2 6.1 12.2
牙龈卟啉单胞菌 ATCC33277 6.1 12.2 6.1 12.2
产黑普氏菌 ATCC25261 6.1 12.2 6.1 12.2
粪肠球菌 ATCC29212 12.2 24.4 24.4 48.8

Figure 2

Chemical structures of representative quaternary ammonium compounds in antimicrobial biomedical materials"

[1] Liu Y, Zhang L, Niu LN , et al. Antibacterial and remineralizing orthodontic adhesive containing quaternary ammonium resin monomer and amorphous calcium phosphate nanoparticles[J]. J Dent, 2018,72:53-63.
doi: 10.1016/j.jdent.2018.03.004 pmid: 29534887
[2] Wu YK, Cheng NC, Cheng CM . Biofilms in chronic wounds: pathogenesis and diagnosis[J]. Trends Biotechnol, 2018, DOI: https://doi.org/10.1016/j.tibtech.2018.10.011
[3] Muñoz-Bonilla A, Fernández-García M . Polymeric materials with antimicrobial activity[J]. Prog Polym Sci, 2012,37(2):281-339.
doi: 10.1016/j.progpolymsci.2011.08.005
[4] Imazato S, Ma S, Chen JH , et al. Therapeutic polymers for dental adhesives: loading resins with bio-active components[J]. Dent Mater, 2014,30(1):97-104.
doi: 10.1016/j.dental.2013.06.003 pmid: 4312699
[5] Stewart CA, Finer Y . Biostable, antidegradative and antimicrobial restorative systems based on host-biomaterials and microbial interactions[J]. Dent Mater, 2018, DOI: https://doi.org/10.1016/j.dental.2018.09.013
[6] Buffet-BataillonS, Tattevin P, Bonnaure-Mallet M , et al. Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds--a critical review[J]. Int J Antimicrob Agents, 2012,39(5):381-389.
doi: 10.1016/j.ijantimicag.2012.01.011 pmid: 22421329
[7] Zhang K, Baras B, Lynch CD , et al. Developing a new generation of therapeutic dental polymers to inhibit oral biofilms and protect teeth[J]. Materials (Basel), 2018,11(9):1747.
[8] Jiao Y, Niu LN, Ma S , et al. Quaternary ammonium-based biomedical materials: state-of-the-art, toxicological aspects and antimicrobial resistance[J]. Prog Polym Sci, 2017,71:53-90.
doi: 10.1016/j.progpolymsci.2017.03.001
[9] Liu SY, Tonggu L, Niu LN , et al. Antimicrobial activity of a quaternary ammonium methacryloxy silicate-containing acrylic resin: a randomised clinical trial[J]. Sci Rep, 2016,6:21882.
doi: 10.1038/srep21882 pmid: 26903314
[10] Gou YP, Meghil MM, Pucci CR , et al. Optimizing resin-dentin bond stability using a bioactive adhesive with concomitant antibacterial properties and anti-proteolytic activities[J]. Acta Biomater, 2018,75:171-182.
doi: 10.1016/j.actbio.2018.06.008
[11] Visse R, Nagase H . Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry[J]. Circ Res, 2003,92(8):827-839.
[12] Tezvergil-Mutluay A, Agee KA, Uchiyama T , et al. The inhibitory effects of quaternary ammonium methacrylates on soluble and matrix-bound MMPs[J]. J Dent Res, 2011,90(4):535-540.
doi: 10.1177/0022034510389472 pmid: 3144134
[13] Liu N, Li F, Chen YJ , et al. The inhibitory effect of a polymerisable cationic monomer on functional matrix metalloproteinases[J]. J Dent, 2013,41(11):1101-1108.
doi: 10.1016/j.jdent.2013.08.008 pmid: 23954575
[14] Mendel V, Simanowski HJ, Scholz HC , et al. Therapy with gentamicin-PMMA beads, gentamicin-collagen sponge, and cefazolin for experimental osteomyelitis due to Staphylococcus aureus in rats[J]. Arch Orthop Trauma Surg, 2005,125(6):363-368.
doi: 10.1007/s00402-004-0774-2 pmid: 15864679
[15] Punyani S, Singh H . Synjournal, characterization, and antimicrobial properties of novel quaternary amine methacrylate copolymers[J]. J Appl Polym Sci, 2008,107:2861-2870.
doi: 10.1002/app.27340
[16] Deb S, Doiron R, Di Silvio L , et al. PMMA bone cement containing a quaternary amine comonomer with potential antibacterial properties[J]. J Biomed Mater Res B Appl Biomater, 2008,85(1):130-139.
doi: 10.1002/jbm.b.30925 pmid: 17806110
[17] Kalomiraki M, Thermos K, Chaniotakis NA . Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications[J]. Int J Nanomedicine, 2015,11:1-12.
doi: 10.2147/IJN.S93069 pmid: 4694674
[18] Abid CKVZ, Jain S, Jackeray R , et al. Formulation and characterization of antimicrobial quaternary ammonium dendrimer in poly(methyl methcarylate) bone cement[J]. J Biomed Mater Res B Appl Biomater, 2017,105(3):521-530.
doi: 10.1002/jbm.b.33553 pmid: 26584408
[19] Hu F, Zhou Z, Xu Q , et al. A novel pH-responsive quaternary ammonium chitosan-liposome nanoparticles for periodontal treatment[J]. Int J Biol Macromol, 2018,29:1113-1119.
[20] Hetrick EM, Schoenfisch MH . Reducing implant-related infections: active release strategies[J]. Chem Soc Rev, 2006,35(9):780-789.
doi: 10.1039/b515219b pmid: 16936926
[21] Masini BD, Stinner DJ, Waterman SM , et al. Bacterial adherence to suture materials[J]. J Surg Educ, 2011,68(2):101-104.
doi: 10.1016/j.jsurg.2010.09.015 pmid: 21338964
[22] Mogoşanu GD, Grumezescu AM . Natural and synthetic polymers for wounds and burns dressing[J]. Int J Pharm, 2014,463(2):127-136.
doi: 10.1016/j.ijpharm.2013.12.015 pmid: 24368109
[23] Dastjerdi R, Montazer M . A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties[J]. Colloids Surfaces B Biointerfaces, 2010,79(1):5-18.
[24] Supaphol P, Suwantong O, Sangsanoh P , et al. Electrospinning of biocompatible polymers and their potentials in biomedical applications[J]. Adv Polym Sci, 2012,246(1):213-240.
doi: 10.1007/12_2011_143
[25] Uykun N, Ergal I, Kurt H , et al. Electrospun antibacterial nanofibrous polyvinylpyrrolidone/cetyltrimethylammonium bromide membranes for biomedical applications[J]. J Bioact Compat Polym, 2014,29(4):382-397.
[26] Yu D, Cai JY, Liu X , et al. Novel immobilization of a quaternary ammonium moiety on keratin fibers for medical applications[J]. Int J Biol Macromol, 2014,70:236-240.
doi: 10.1016/j.ijbiomac.2014.06.025 pmid: 24971553
[27] Meghil MM, Rueggeberg F, El-Awady A , et al. Novel coating of surgical suture confers antimicrobial activity against Porphyromonas gingivalis and Enterococcus faecalis[J]. J Periodontol, 2015,86(6):788-794.
[28] Liu Y, Ma K, Li R , et al. Antibacterial cotton treated with N-halamine and quaternary ammonium salt[J]. Cellulose, 2013,20(6):3123-3130.
doi: 10.1007/s10570-013-0056-7
[29] Kang CK, Kim SS, Kim S , et al. Antibacterial cotton fibers treated with silver nanoparticles and quaternary ammonium salts[J]. Carbohydr Polym, 2016,151:1012-1018.
doi: 10.1016/j.carbpol.2016.06.043 pmid: 27474649
[30] Imazato S, Kinomoto Y, Tarumi H , et al. Incorporation of antibacterial monomer MDPB into dentin primer[J]. J Dent Res, 1997,76(3):768-772.
[31] Imazato S, Ebi N, Tarumi H , et al. Bactericidal activity and cytotoxicity of antibacterial monomer MDPB[J]. Biomaterials, 1999,20(9):899-903.
doi: 10.1016/S0142-9612(98)00247-6 pmid: 10226716
[32] Imazato S, Ohmori K, Russell RR , et al. Determination of bactericidal activity of antibacterial monomer MDPB by a viability staining method[J]. Dent Mater J, 2008,27(1):145-148.
doi: 10.4012/dmj.27.145 pmid: 18309624
[33] Xiao YH, Chen JH, Fang M , et al. Antibacterial effects of three experimental quaternary ammonium salt (QAS) monomers on bacteria associated with oral infections[J]. J Oral Sci, 2008,50(3):323-327.
doi: 10.2334/josnusd.50.323 pmid: 18818469
[34] Xiao YH, Ma S, Chen JH , et al. Antibacterial activity and bonding ability of an adhesive incorporating an antibacterial monomer DMAE-CB[J]. J Biomed Mater Res B Appl Biomater, 2009,90(2):813-817.
doi: 10.1002/jbm.b.31350 pmid: 19280645
[35] Li F, Chai ZG, Sun MN , et al. Anti-biofilm effect of dental adhesive with cationic monomer[J]. J Dent Res, 2009,88(4):372-376.
doi: 10.1177/0022034509334499 pmid: 19407160
[36] Li F, Chen J, Chai Z , et al. Effects of a dental adhesive incorporating antibacterial monomer on the growth, adherence and membrane integrity of Streptococcus mutans[J]. J Dent, 2009,37(4):289-296.
doi: 10.1016/j.jdent.2008.12.004 pmid: 19185408
[37] Yang YW, Huang L, Dong Y , et al. In vitro antibacterial activity of a novel resin-based pulp capping material containing the quaternary ammonium salt MAE-DB and portland cement[J]. PLoS One, 2014,9(11):e112549.
doi: 10.1371/journal.pone.0112549 pmid: 4229210
[38] Yu F, Dong Y, Yu HH , et al. Antibacterial activity and bonding ability of an orthodontic adhesive containing the antibacterial monomer 2-methacryloxylethyl hexadecyl methyl ammonium bromide[J]. Sci Rep, 2017,7:41787.
doi: 10.1038/srep41787 pmid: 28169312
[39] Huang L, Yu F, Sun X , et al. Antibacterial activity of a modified unfilled resin containing a novel polymerizable quaternary ammonium salt MAE-HB[J]. Sci Rep, 2016,6:33858.
doi: 10.1038/srep33858 pmid: 51773
[40] Beyth N, Houri-Haddad Y, Baraness-Hadar L , et al. Surface antimicrobial activity and biocompatibility of incorporated polyethylenimine nanoparticles[J]. Biomaterials, 2008,29(31):4157-4163.
doi: 10.1016/j.biomaterials.2008.07.003 pmid: 18678404
[41] Pei Y, Liu H, Yang Y , et al. Biological activities and potential oral applications of n-acetylcysteine: progress and prospects[J]. Oxid Med Cell Longev, 2018: 2835787.
doi: 10.1155/2018/2835787 pmid: 29849877
[42] Schieber M, Chandel NS . ROS function in redox signaling and oxidative stress[J]. Curr Biol, 2014,24(10):453-462.
doi: 10.1016/j.cub.2014.03.034 pmid: 4055301
[43] Jiao Y, Ma S, Wang Y , et al. Methacryloxylethyl cetyl ammonium chloride induces DNA damage and apoptosis in human dental pulp cells via generation of oxidative stress[J]. Int J Biol Sci, 2016,12(5):580-593.
doi: 10.7150/ijbs.14578 pmid: 4852205
[44] Ma S, Shan LQ, Xiao YH , et al. The cytotoxicity of methacryloxylethyl cetyl ammonium chloride, a cationic antibacterial monomer, is related to oxidative stress and the intrinsic mitochondrial apoptotic pathway[J]. Brazilian J Med Biol Res, 2011,44(11):1125-1133.
doi: 10.1590/S0100-879X2011007500130 pmid: 22002093
[45] Jiao Y, Ma S, Li J , et al. N-acetyl cysteine (NAC)-directed detoxification of methacryloxylethyl cetyl ammonium chloride (DMAE-CB)[J]. PLoS One, 2015,10(8):e0135815.
doi: 10.1371/journal.pone.0135815 pmid: 4537128
[46] Ma S, Imazato S, Takahashi Y , et al. Mechanism of detoxification of the cationic antibacterial monomer 12-methacryloyloxydodecylpyridiniumbromide (MDPB) by N-acetyl cysteine[J]. Dent Mater, 2013,29(12):1219-1227.
doi: 10.1016/j.dental.2013.09.008 pmid: 24119918
[1] CAO Zhiwei,YANG Yuqing,ZHOU Tao,WU Peiyao,XIE Liang. Research progress on trace elements-modified titanium implant surfaces [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(2): 107-111.
[2] ZHOU Wen,PENG Xian,CHENG Lei. Research progress on factors affecting bacterial adhesion on the oral implant surface [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(2): 102-106.
[3] ZENG Yongfa,FU Yulin,DAI Qun,SHI Lianshui. Preparation and antibacterial properties of La-doped TiO2 films on 3Y-TZP ceramic surface [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(3): 153-158.
[4] WANG Ping,ZHANG Yingjuan. Material properties and clinical application status of Biodentine [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(11): 745-748.
[5] Xiaohu XU, Xingzhu DAI, Wanghong ZHAO. Research progress on anticaries nanomaterials [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(7): 472-476.
[6] Jing XU, Jimin XIONG, Pengju XIN, jing SU. Slightly acidic electrolyzed water cytotoxicity to oral keratinocyte monolayers [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(6): 360-364.
[7] Wen-miao LI, Zheng-gen PIAO. Progress in the study of calcium hydroxide in different vehicles [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(3): 192-195.
[8] Zhen-xia LI, Ting-ting CHEN, Pei-lin LI, Jing XUE, Qiang ZHANG. Antibacterial effects and tensile bonding strength of orthodontic adhesive containing nanohydroxyapatite [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(2): 93-96.
[9] YANG Jin,YIN Zhong-ping,XU Yan-hua. The fatigue resistances of glass fiber reinforced composite resin space maintainers: an in vitro study [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(9): 507-510.
[10] Jiang CHEN,Lin ZHOU. Advances in the design of the transmucosal part of dental implant [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(8): 441-444.
[11] Hai-xia LIU,Xuan CHEN,Ling ZOU. An in vitro evaluation of antibacterial properties of 2 pulp capping materials [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(10): 578-581.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hong-chang LAI,Jun-yu SHI. Maxillary sinus floor elevation[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(1): 8 -12 .
[2] Pin ZHOU, Yang-fei LI. MRI study of temporomandibular joint disc position in asymptomatic volunteers[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(4): 239 -244 .
[3] Xinxin XIA, Fang FANG, Lijuan CHENG. Shaping ability of Pathfile and WaveOne in simulated root canals[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(6): 365 -368 .
[4] Yuanhong LI, Xinyi FANG, Yu QIU, Lei CHENG. Experimental study on the effects of green tea on salivary flow rate and pH value[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(9): 560 -564 .
[5] Chengzhang LI. Masticatory muscles in occlusion[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(12): 755 -760 .
[6] . [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(1): 1 .
[7] Zhirong WU, Shiguang Huang. Research progress on the etiology, clinical examination and treatment of peri-implantitis[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(6): 401 -405 .
[8] Xiaowu YAO, Shisheng CHEN, Zizheng LU, Minxiao LIN. Clinical report and literature review on the amyloidosis of salivary glands[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(8): 533 -536 .
[9] Lan LIAO, Lijun ZENG. Updated research on digitalization in aesthetic restoration[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(7): 409 -414 .
[10] Yu LU, Chengxia LIU, Zhongjun LIU. Role of TRAF6 in inflammatory responses of human osteoblast-like cells with Enterococcusfaecalis[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(7): 420 -425 .
This work is licensed under a Creative Commons Attribution 3.0 License.