Journal of Prevention and Treatment for Stomatological Diseases ›› 2019, Vol. 27 ›› Issue (8): 485-489.doi: 10.12016/j.issn.2096-1456.2019.08.002

• Basic Study • Previous Articles     Next Articles

Effect of endoplasmic reticulum stress on the osteogenic differentiation of periodontal ligament cells under continuous static pressure

REN Qingyuan1,HE Wulin1(),WANG Qing1,CHU Hongxing2,LIN Haiyan1   

  1. 1. Department of Orthodontics, Stomatological Hospital,Southern Medical University, Guangzhou 510280, China
    2. Department of Periodontal Implants, Stomatological Hospital,Southern Medical University, Guangzhou 510280, China
  • Received:2019-04-25 Revised:2019-06-08 Online:2019-08-20 Published:2019-08-16
  • Contact: Wulin HE E-mail:630221587@qq.com

Abstract:

Objective To study the effect of continuous static pressure on the endoplasmic reticulum of human periodontal ligament cells (hPDLCs) and the mechanism of osteogenic differentiation.Methods hPDLCs cultured in vitro were subjected to 1 g/cm 2 of continuous compressive pressure (CCP) by custom-made, round, glass panes for 0, 2, 4, and 6 h, respectively. Alkaline phosphatase staining was used to detect osteogenic differentiation, and real-time quantitative PCR was used to detect the expression of protein kinase receptor-like ER kinase (PERK), eukaryotic translation initiation factor 2α (eIF2α), and transcription activation factor 4 (ATF-4). The 0 h loading group was the control group. Results After CCP treatment, the alkaline phosphatase staining of hPDLCs was blue-violet and significantly stronger than that of cells in the control group. The expression levels of PERK and ATF4 in the hPDLCs after CCP treatment were higher than those of cells in the control group (P < 0.05) and increased over time (P < 0.05). The expression of eIF2α was lower in the experimental groups than in the control group (P < 0.05) and decreased over time (P < 0.05).Conclusion Mechanical stimulation can activate ERS in hPDLCs, leading to enhanced PERK-eIF2α-ATF4 signaling and inducing osteogenic differentiation.

Key words: human periodontal ligament cells, PERK-eIF2α-ATF4 pathway;, endoplasmic reticulum stress, continuously compressive pressure, osteogenic differentiation

CLC Number: 

  • R78

Table 1

Primer sequences used for polymerase chain reactions"

目的基因 引物序列(5′-3′) 退火温度(℃)
PERK TCCAGCCCAGTTCACCAAAG 60
AACCGTCTGCTCTTCCTCATCC 60
ATF-4 TGGGTTCTCCAGCGACAAGG 60
ATACCCAACAGGGCATCCAAG 60
eIF2a CCCTAAGAGCAGGTTTGAATTGT 60
TTCTCTCCAGGGTTGTCGTAGTC 60
β-actin CACCCAGCACAATGAAGATCAAGAT 60
CCAGTTTTTAAATCCTGAGTCAAGC 60

Figure 1

Culture of human periodontal ligament cells × 100"

Figure 2

Alkaline phosphatase staining of human periodontal membrane cells × 200"

Table 2

Expressions of PERK、ATF4、eIF2α genes in hPDLCs stimulated by continuously compressive pressure"

组别 样本量 0 h 2 h 4 h 6 h F P
PERK 3 1.00 1.22 ± 0.171) 3.68 ± 0.471)2) 6.88 ± 0.341)2)3) 242.29 < 0.001
ATF4 3 1.00 35.60 ± 2.501) 864.89 ± 11.071)2) 4736.31 ± 121.66 1)2)3) 4081.78 < 0.001
eIF2α 3 1.00 0.60 ± 0.111) 0.51 ± 0.071)2) 0.013 ± 0.011)2)3) 110.61 < 0.001
注:1)与0 h相比,P < 0.05;2)与2 h相比,P < 0.05;3)与4 h相比,P < 0.05
[1] Hazan-Molina H, Reznick AZ, Kaufman H , et al. Periodontal cytokines profile under orthodontic force and extracorporeal shock wave stimuli in a rat model[J]. J Periodontal Res, 2015,50(3):389-396.
[2] Cao H, Kou X, Yang R , et al. Force-induced Adrb2 in periodontal ligament cells promotes tooth movement[J]. J Dent Res, 2014,93(11):1163-1169.
doi: 10.1177/0022034514551769
[3] Yuan H, Zhu X, Lu J , et al. Accelerated orthodontic tooth movement following Le Fort I osteotomy in a rodent model[J]. J Oral Maxil Surg, 2014,72(4):764-772.
[4] Dutra EH, Nanda R, Yadav S . Bone response of loaded periodontal ligament[J]. Curr Osteoporos Rep, 2016,14(6):280-283.
[5] Isola G, Matarese G, Cordasco G , et al. Mechanobiology of the tooth movement during the orthodontic treatment: a literature review[J]. Minerva Stomatol, 2016,65(5):299-327.
[6] Zhu AJ, Scott MP . Incredible journey: how do developmental signals travel through tissue?[J]. Genes Dev, 2004,18(24):2985-2997.
[7] Sprogar S, Vaupotic T, Coer A , et al. The endothelin system mediates bone modeling in the late stage of orthodontic tooth movement in rats[J]. Bone, 2008,43(4):740-747.
doi: 10.1016/j.bone.2008.06.012
[8] Wang WG, Lian N, Ma Y , et al. Chondrocytic Atf4 regulates osteoblast differentiation and function via Ihh[J]. Development, 2012,139(3):601-611.
[9] Danciu TE, Li Y, Koh A , et al. The basic helix loop helix transcription factor twist1 is a novel regulator of ATF4 in osteoblasts[J]. J Cell Biochem, 2012,113(1):70-79.
doi: 10.1002/jcb.23329
[10] Yu L, Li B, Zhang M , et al. Melatonin reduces PERK-eIF2α-ATF4-mediated endoplasmic reticulum stress during myocardial ischemia reperfusion injury: role of RISK and SAFE pathways interaction[J]. Apoptosis, 2016,21(7):809-824.
[11] Cimellaro A, Perticone M, Fiorentino TV , et al. Role of endoplasmic reticulum stress in endothelial dysfunction[J]. Nutr Metab Cardiovasc Dis, 2016,26(10):863-871.
[12] Lu P, Li X, Ruan LH , et al. Effect of siRNA PERK on fluoride induced osteoblastic differentiation in OS732 cells[J]. Biol Trace Elem Res, 2014,159(1/3):434-439.
[13] 薛芃, 李蓓, 谈珺 , 等. 脂多糖诱导的内质网应激在牙周膜干细胞中的表达及其对成骨分化的影响[J]. 中华口腔医学杂志, 2015,50(9):548-553.
[14] Yang SY, Wei FL, Hu LH , et al. PERK-eIF2 alpha-ATF4 pathway mediated by endoplasmic reticulum stress response is involved in osteodifferentiation of human periodontal ligament cells under cyclic mechanical force[J]. Cell Signal, 2016,28(8):880-886.
[15] Krishnan V, Davidovitch Z. Cellular , molecular,tissue-level reactions to orthodontic force[J].Am J Orthod Dentofacial Orthop, 2006,129(4): 469.e1-469. 32.
[16] 张静, 朱双喜, 荣琼 , 等. miR-27a调控比格犬上颌窦黏膜干细胞成骨分化的研究[J]. 口腔疾病防治, 2018,26(8):14-20.
[17] Baumert U, Golan I, Redlich M , et al. Clarification of data reported in"cleidocranial dysplasia: molecular genetic analysis and phenotypic-based description of a middle European patient Group"(AJMG 139A:78-85)[J]. Am J Med Genet A, 2006,140(9):1030.
[18] 张建兴, 黄生高, 钟孝欢 , 等. 人牙周膜细胞体外培养和机械压力模型构建[J]. 口腔医学研究, 2006,22(1):38-42.
[19] Saito A, Ochiai K, Kondo S , et al. Endoplasmic reticulum stress response mediated by the PERK-eIF2(alpha)-ATF4 pathway is involved in osteoblast differentiation induced by BMP2[J]. J Biol Chem, 2011,286(6):4809-4818.
[20] Milat F, Ng KW . Is Wnt signalling the final common pathway leading to bone formation?[J]. Mol Cell Endocrinol, 2009,310(1/2):52-62.
[21] Charles JF, Aliprantis AO . Osteoclasts: more than 'bone eaters'[J]. Trends Mol Med, 2014,20(8):449-459.
[22] 李婧, 程梁, 郭吕华 , 等. 银杏叶中异鼠李素对RAW264.7细胞向破骨细胞分化的影响及其分子机制[J]. 口腔疾病防治, 2018,26(3):158-165.
[1] WANG Zhiheng,ZUO Jie,WANG Mengqi,ZHU Shaojun,LIU Yishan. miR-214 inhibits the osteogenic differentiation of dental follicle cells in vitro [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(3): 146-152.
[2] ZHOU Jiaqi,SHU Linjing,XIONG Yi,ZHANG Yixin,XIANG Lin,WU Yingying. Study on the role of FoxO1 in the regulation of osteoblastic metabolism by 1,25(OH)2D3 in a high glucose environment [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(1): 24-29.
[3] LIAO Chunhui,LI Mingfei,YE Jinmei,PENG Wei,CHEN Songling. The regulatory mechanisms of IGF1 in the osteogenic differentiation of canine MSMSCs via BMP2-Smad1/5 signaling pathway [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(1): 16-23.
[4] Jing ZHANG, Shuangxi ZHU, Qiong RONG, Wei PENG, Xiang LI, Songling CHEN. Role of miR-27a in the osteogenic differentiation of beagle maxillary sinus membrane stem cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(8): 484-490.
[5] Xiumei ZHENG, Wenxia HUANG. Effects of inflammatory microenvironment mediated by macrophage on the proliferation and osteogenic differentiation of periodontal ligament cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(5): 297-303.
[6] Zetao CHEN,Xiaoshuang WANG,Linjun ZHANG. The concept of “osteoimmunomodulation” and its application in the development of “osteoimmune-smart” bone substitute materials [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(11): 688-698.
[7] Lin YUAN, Jun QIAN, Zhengyi YANG, Han WANG, Wucheng GUO, Jieli CHENG, Jingjing SONG, Enliang HE, Yi ZHANG. Comparison of osteogenic differentiation abilities of mesenchymal stem cells from different sources of hBMSCs [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(9): 554-559.
[8] Jingwen PANG, Yalin WU, Ting XU, Xiumei ZHUANG. Effects of hypoxic condition on osteogenic differentiation of human periodontal ligament cells via hypoxia inducible factor-1α [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(8): 488-493.
[9] Hai GAO,Xiao CHEN,Dong-hua GUAN,Ying-jie ZHANG,Chang-lü LIN. Effects of high glucose on osteogenic differentiation of hBMSC [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(1): 26-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hong-chang LAI,Jun-yu SHI. Maxillary sinus floor elevation[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(1): 8 -12 .
[2] Pin ZHOU, Yang-fei LI. MRI study of temporomandibular joint disc position in asymptomatic volunteers[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(4): 239 -244 .
[3] Xinxin XIA, Fang FANG, Lijuan CHENG. Shaping ability of Pathfile and WaveOne in simulated root canals[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(6): 365 -368 .
[4] Yuanhong LI, Xinyi FANG, Yu QIU, Lei CHENG. Experimental study on the effects of green tea on salivary flow rate and pH value[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(9): 560 -564 .
[5] Chengzhang LI. Masticatory muscles in occlusion[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(12): 755 -760 .
[6] . [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(1): 1 .
[7] Zhirong WU, Shiguang Huang. Research progress on the etiology, clinical examination and treatment of peri-implantitis[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(6): 401 -405 .
[8] Xiaowu YAO, Shisheng CHEN, Zizheng LU, Minxiao LIN. Clinical report and literature review on the amyloidosis of salivary glands[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(8): 533 -536 .
[9] Lan LIAO, Lijun ZENG. Updated research on digitalization in aesthetic restoration[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(7): 409 -414 .
[10] Yu LU, Chengxia LIU, Zhongjun LIU. Role of TRAF6 in inflammatory responses of human osteoblast-like cells with Enterococcusfaecalis[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(7): 420 -425 .
This work is licensed under a Creative Commons Attribution 3.0 License.