Journal of Prevention and Treatment for Stomatological Diseases ›› 2021, Vol. 29 ›› Issue (7): 456-461.DOI: 10.12016/j.issn.2096-1456.2021.07.004
• Basic Study • Previous Articles Next Articles
ZHANG Ying(),HU Dandan,HUANG Haoning,LUO Xiaoping(
)
Received:
2020-12-28
Revised:
2021-02-03
Online:
2021-07-20
Published:
2021-04-19
Contact:
Xiaoping LUO
Supported by:
通讯作者:
骆小平
作者简介:
张颖,硕士研究生,Email: 基金资助:
CLC Number:
ZHANG Ying,HU Dandan,HUANG Haoning,LUO Xiaoping. Effect of different treatments of highly translucent zirconia on the bonding strength between zirconia and veneering porcelain[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(7): 456-461.
张颖,胡丹丹,黄皓宁,骆小平. 高半透性氧化锆基底的不同处理对锆-瓷结合强度的影响[J]. 口腔疾病防治, 2021, 29(7): 456-461.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.kqjbfz.com/EN/10.12016/j.issn.2096-1456.2021.07.004
Materials | Sintering process |
---|---|
KATANA zirconia | Rate of temperature increase: 10 ℃/min; high temperature: 1 500 ℃; hold time: 2 h; rate of temperature decrease: -10 ℃/min |
Veneering porcelain 1 | Pre-drying: 500 ℃ for 2 min; rate of temperature increase: 55 ℃/min; high temperature: 950 ℃; hold time: 1 min; furnace cooling |
Veneering porcelain 2 | Pre-drying: 500 ℃ for 6 min; rate of temperature increase: 55 ℃/min; high temperature: 910 ℃; hold time: 1 min; furnace cooling. |
Table 1 Sintering process of zirconia and Veneering porcelain used in this study
Materials | Sintering process |
---|---|
KATANA zirconia | Rate of temperature increase: 10 ℃/min; high temperature: 1 500 ℃; hold time: 2 h; rate of temperature decrease: -10 ℃/min |
Veneering porcelain 1 | Pre-drying: 500 ℃ for 2 min; rate of temperature increase: 55 ℃/min; high temperature: 950 ℃; hold time: 1 min; furnace cooling |
Veneering porcelain 2 | Pre-drying: 500 ℃ for 6 min; rate of temperature increase: 55 ℃/min; high temperature: 910 ℃; hold time: 1 min; furnace cooling. |
Figure 1 Schematic diagram of parallel shear bond strength test a: front view, the loading head is parallel to the fixture; b: side view, the loading head is close to the interface; white arrow shows the cylindrical veneering porcelain; yellow arrow shows zirconia substrate
Figure 2 Surface morphology of zirconia before and after sandblasting displayed (LSCM, × 10) a: the surface of zirconia is smooth before sandblasting; b: the surface of zirconia is rough after sandblasting; LSCM: laser scanning confocal microscope
Groups | Shear bond strength ($\bar{x}\pm s$, MPa) |
---|---|
C | 21.86 ± 3.18* |
S | 22.12 ± 3.06* |
B | 19.19 ± 1.46* |
SB | 27.76 ± 1.95 |
Table 2 Comparison of shear bond strength values of each group n=7
Groups | Shear bond strength ($\bar{x}\pm s$, MPa) |
---|---|
C | 21.86 ± 3.18* |
S | 22.12 ± 3.06* |
B | 19.19 ± 1.46* |
SB | 27.76 ± 1.95 |
Groups | Adhesive failure | Mixed failure | Cohesive failure |
---|---|---|---|
C | 0 | 6 | 1 |
S | 1 | 5 | 1 |
B | 1 | 5 | 1 |
SB | 2 | 4 | 1 |
Table 3 Failure types of veneering porcelain in each group after shear bond strength test n=7
Groups | Adhesive failure | Mixed failure | Cohesive failure |
---|---|---|---|
C | 0 | 6 | 1 |
S | 1 | 5 | 1 |
B | 1 | 5 | 1 |
SB | 2 | 4 | 1 |
Figure 3 Typical fracture morphologies of each group after shear bond strength test a: group C; b: group S; c: group B; d: group SB; white arrow shows the remaining veneering porcelain; yellow arrow shows zirconia substrate; the mixed type of failure was most frequent in all groups, most of the zirconia substrate is exposed, and the porcelain residue is little; C: control; S: sandblasting; B: bonding; SB: sandblasting and bonding; stereomicroscope, × 7.5
[1] |
Tabatabaian F. Color aspect of monolithic zirconia restorations: a review of the literature[J]. J Prosthodont, 2019,28(3):276-287. doi: 10.1111/jopr.12906.
URL PMID |
[2] |
Kaizer MR, Kolakarnprasert N, Rodrigues C, et al. Probing the interfacial strength of novel multi-layer zirconias[J]. Dent Mater, 2020,36(1):60-67. doi: 10.1016/j.dental.2019.10.008.
DOI URL PMID |
[3] | 王辰. 两种氧化锆处理剂对氧化锆陶瓷粘接效果的影响[J]. 口腔疾病防治, 2020,28(2):79-83. doi: 10.12016/j.issn.2096-1456.2020.02.003. |
Wang C. Influence of two kinds of zirconia primers on the bonding effect of zirconia ceramics[J]. J Prev Treat Stomatol Dis, 2020,28(2):79-83. doi: 10.12016/j.issn.2096-1456.2020.02.003. | |
[4] | Fathi A, Farzin M, Giti R, et al. Effects of number of firings and veneer thickness on the color and translucency of 2 different zirconia-based ceramic systems[J]. J Prosthet Dent, 2019, 122(6): 565.e1-565.e7. doi: 10.1016/j.prosdent.2019.08.020. |
[5] |
Pihlaja J, Näpänkangas R, Raustia A. Outcome of zirconia partial fixed dental prostheses made by predoctoral dental students: a clinical retrospective study after 3 to 7 years of clinical service[J]. J Prosthet Dent, 2016,116(1):40-46. doi: 10.1016/j.prosdent.2015.10.026.
URL PMID |
[6] |
Lee ES, Huh YH, Park CJ, et al. Effect of silica-containing glass-ceramic liner treatment on zirconia coping retention[J]. J Prosthet Dent, 2018,120(5):732-739. doi: 10.1016/j.prosdent.2017.12.005.
DOI URL PMID |
[7] |
Sailer I, Balmer M, Hüsler J, et al. 10-year randomized trial (RCT) of zirconia-ceramic and metal-ceramic fixed dental prostheses[J]. J Dent, 2018,76:32-39. doi: 10.1016/j.jdent.2018.05.015.
URL PMID |
[8] |
Silva-Herzog RD, Pozos-Guillen A, Aragón-Piña A, et al. Glass coatings to enhance the interfacial bond strength between veneering ceramic and zirconia[J]. Odontology, 2020,108(3):415-423. doi: 10.1007/s10266-020-00497-w.
DOI URL PMID |
[9] |
Anunmana C, Wansom W. Bonding measurement-strength and fracture mechanics approaches[J]. Dent Mater J, 2017,36(4):497-502. doi: 10.4012/dmj.2016-193.
DOI URL PMID |
[10] |
Jabbar MK, Dulaimi SF. Effect of the combined Zirconium dioxide surface treatment on the shear bond strength of a veneering ceramic to Zirconium dioxide[J]. Dent Med Probl, 2020,57(2):177-183. doi: 10.17219/dmp/116409.
DOI URL PMID |
[11] |
Yc L, Hsieh JP, Yc C, et al. Promoting porcelain-zirconia bonding using different atmospheric pressure gas plasmas[J]. Dent Mater, 2018,34(8):1188-1198. doi: 10.1016/j.dental.2018.05.004.
DOI URL PMID |
[12] |
Yadav P, Dabas N, Phukela SS, et al. A comparative evaluation of the effect of liners on the shear bond strength of veneered zirconia block: an in vitro study[J]. J Indian Prosthodont Soc, 2019,19(4):338-344. doi: 10.4103/jips.jips_103_19.
DOI URL PMID |
[13] | Abdullah A, Yu H, Pollington S, et al. Effect of repeated laser surface treatments on shear bond strength between zirconia and veneering ceramic[J]. J Prosthet Dent, 2020, 123(2): 338.e1-338.e6. doi: 10.1016/j.prosdent.2019.10.007. |
[14] |
Kim SH, Park CJ, Cho LR, et al. Evaluation of the ceramic liner bonding effect between zirconia and Lithium disilicate[J]. J Prosthet Dent, 2018,120(2):282-289. doi: 10.1016/j.prosdent.2017.10.022.
DOI URL PMID |
[15] |
Lee HS, Kwon TY. The application of a novel ceramic liner improves bonding between zirconia and veneering porcelain[J]. Materials (Basel), 2017,10(9):1023. doi: 10.3390/ma10091023.
DOI URL |
[16] |
Song KH, Im YW, Lee JH, et al. Evaluation of mold-enclosed shear bond strength between zirconia core and porcelain veneer[J]. Dent Mater J, 2018,37(5):783-788. doi: 10.4012/dmj.2017-339.
URL PMID |
[17] |
Lee YH, Park CJ, Cho LR, et al. Effects of Lithium and Phosphorus on the efficacy of a liner for increasing the shear bond strength between Lithium disilicate and zirconia[J]. J Adhes Dent, 2018,20(6):535-540. doi: 10.3290/j.jad.a41629.
URL PMID |
[18] |
Thammajaruk P, Buranadham S, Thanatvarakorn O, et al. Influence of glass-ceramic coating on composite zirconia bonding and its characterization[J]. Dent Mater, 2019,35(1):105-113. doi: 10.1016/j.dental.2018.11.001.
DOI URL PMID |
[19] | 夏玉宏, 徐飞, 陈蕾, 等. 氧化锆表面不同处理方式对锆瓷与饰瓷结合强度的影响[J]. 中南大学学报(医学版), 2019,44(1):53-58. doi: 10.11817/j.issn.1672-7347.2019.01.009. |
Xia YH, Xu F, Chen L, et al. Effect of different surface zirconium oxide treatments on binding strength between zirconia and veneering ceramics[J]. J Cent South Univ (Med Sci), 2019,44(1):53-58. doi: 10.11817/j.issn.1672-7347.2019.01.009. | |
[20] |
Cui C, Sun J. Optimizing the design of bio-inspired functionally graded material (FGM) layer in all-ceramic dental restorations[J]. Dent Mater J, 2014,33(2):173-178. doi: 10.4012/dmj.2013-264.
DOI URL |
[21] |
Saka M, Yuzugullu B. Bond strength of veneer ceramic and zirconia cores with different surface modifications after microwave sintering[J]. J Adv Prosthodont, 2013,5(4):485-493. doi: 10.4047/jap.2013.5.4.485.
DOI URL |
[22] |
Lenz J, Kessel S. Thermal stresses in metal-ceramic specimens for the ISO crack initiation test (three-point flexure bond test)[J]. Dent Mater. 1998,14(4):277-280. doi: 10.1016/s0109-5641(98)00039-6.
DOI URL PMID |
[23] |
El MA. Assessment of bonding effectiveness of adhesive materials to tooth structure using bond strength test methods: a review of literature[J]. Open Dent J, 2018,12:664-678. doi: 10.2174/1745017901814010664.
DOI URL PMID |
[1] | GAO Ye,LV Xuechao,GAO Xuefeng,LIU Yuhao,LIU Yingqun. Effect of two hemostatic agents on the bonding strength of total-etch and self-etch adhesive systems in primary tooth dentin [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(9): 591-595. |
[2] | CHEN Jing,CHEN Wenchuan. Research progress on tetrabutylammonium dihydrogen trifluoride as a substitute for hydrofluoric acid used for porcelain surface treatment [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(9): 629-633. |
[3] | YANG Xuelian,LIU Xiaqing,YANG Qi,FENG Fan,LI Yadan,LI Ying. Research progress on Er: YAG lasers applied for tooth bleaching [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(5): 351-355. |
[4] | WANG Min,JIANG Nan,ZHU Songsong. A novel biomimetic micro/nano hierarchical interface of titanium enhances adhesion, proliferation and osteogenic differentiation of bone marrow mesenchymal cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(4): 226-233. |
[5] | WANG Chenwei,SUN Fangfang,YANG Chuncheng,DING Ling,CHEN Xi,ZHANG Jiaqi,WU Guofeng. Effects of concentrated sulfuric acid etching durations on the shear bond strength between polyether-ketone-ketone and dentin [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(3): 151-156. |
[6] | LI Jiesen,LIN Zhenxiang,WU Dong,ZHENG Zhiqiang,LIN Jie. Finite element analysis of the stress distribution of dental implant crowns with different all-ceramic materials and thicknesses [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(3): 166-170. |
[7] | CHEN Shuang,XUE Xin,JIN Xing′ai,LIU Yingqun. Effect of dentin surface treatments on the bond strength of resin-modified glass ionomer cement [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(2): 130-134. |
[8] | WANG Tianqi,DU Qing,XIE Weili. Preparation and antibacterial properties of a copper-niobium coating on a titanium surface by a microarc oxidation-microwave hydrothermal method [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(11): 733-739. |
[9] | LIN Jie,LIN Zhenxiang,ZHENG Zhiqiang. Effects of the different materials and thicknesses on endocrown stress distribution [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(11): 740-745. |
[10] | ZHANG Yunhan,DENG Xiaoyu,WANG Yan,ZOU Jing,ZHANG Qiong. Progress in restorative treatments of primary incisor defects [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(2): 131-136. |
[11] | Chen WANG. Influence of two kinds of zirconia primers on the bonding effect of zirconia ceramics [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(2): 79-83. |
[12] | WEI Yanan,CHEN Yun,LI Zhiyan. Effect of Er: YAG laser irradiation on the bonding strength of permanent teeth [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(10): 673-676. |
[13] | GUAN Darong, ZOU Kangyuan, CHEN Jueqing, DENG Xiangdong, FU Zhennan. Effect of thermal etching on the shear strength of zirconia substrate and decorative porcelain [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(8): 496-499. |
[14] | Zehong GUO,Yingyuan NING,Shulan XU,Peijun ZHU,Xianglong DING,Yan GAO. Effect of laser-etched pure titanium surface on early proliferation of MG63 cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(7): 435-440. |
[15] | Chang LIU,Yali LIU,Xia LI. Effect of root canal irrigants on the bond strength between resin sealants and dentin [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(6): 404-408. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
This work is licensed under Creative Commons Attribution 3.0 License.