Journal of Prevention and Treatment for Stomatological Diseases ›› 2021, Vol. 29 ›› Issue (12): 854-858.doi: 10.12016/j.issn.2096-1456.2021.12.009

• Review Articles • Previous Articles     Next Articles

Role of mesenchymal stem cells migration in bone injury repair

YAN Shanyu(),MEI Hongxiang,LI Juan()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2020-08-22 Revised:2021-06-30 Online:2021-12-20 Published:2021-08-17
  • Contact: Juan LI;
  • Supported by:
    National Natural Science Foundation of China(31670951);National Natural Science Foundation of China(31370992)


Mesenchymal stem cells (MSCs) are capable of self-replication and multi-directional differentiation, which are very important for the development and reconstruction of mesenchymal tissue. Bone tissue damage repair involves the participation of various cells and molecules. The recovery of bone mass requires sufficiently many MSCs to migrate to the damaged site to perform the reconstruction function. The local inflammatory response at the injury site can recruit MSCs and promote new bone formation. Simultaneously, niche changes during the migration of MSCs will affect their biological performance and initiate the phase of directed differentiation. This article explores the relevant mechanisms that mediate the migration of MSCs in the process of bone injury repair, including the regulation of immune cells and chemotactic signaling molecules in the inflammatory response in the bone repair stage through signaling pathways such as BMP/Smads. Then, it summarizes the mechanism by which the high matrix stiffness upregulates the expression of the integrin and focal adhesions to promote the MSCs migration and osteogenic differentiation. Simultaneously, the migration ability of MSCs can be regulated through drugs or genetic modification to promote the bone injury repair. The improvement of MSCs migration ability can shorten the time of bone tissue damage repair and improve the bone quality. This article reviews the role of the MSCs migration ability in bone tissue injury repair to provide a reference for the application of MSCs with high migration ability in the fields of stem cell therapy for bone related diseases and bone tissue engineering.

Key words: bone injury, bone tissue engineering, stem cell therapy, osteoporosis, osteoarthritis, mesenchymal stem cells, migration, recruitment, homing, integrin, osteogenic differentiation, matrix stiffness

CLC Number: 

  • R78
[1] Zhou Q, Yang C, Yang P. The promotional effect of mesenchymal stem cell homing on bone tissue regeneration[J]. Curr Stem Cell Res Ther, 2017, 12(5):365-376. doi: 10.2174/1574888X10666150211160604.
[2] Lin H, Sohn J, Shen H, et al. Bone marrow mesenchymal stem cells: aging and tissue engineering applications to enhance bone healing[J]. Biomaterials, 2019, 203:96-110. doi: 10.1016/j.biomaterials.2018.06.026.
doi: 10.1016/j.biomaterials.2018.06.026
[3] Tang Y, Wu X, Lei W, et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation[J]. Nat Med, 2009, 15(7):757-765. doi: 10.1038/nm.1979.
doi: 10.1038/nm.1979 pmid: 19584867
[4] Haasters F, Docheva D, Gassner C, et al. Mesenchymal stem cells from osteoporotic patients reveal reduced migration and invasion upon stimulation with BMP-2 or BMP-7[J]. Biochem Biophys Res Commun, 2014, 452(1):118-123. doi: 10.1016/j.bbrc.2014.08.055.
doi: 10.1016/j.bbrc.2014.08.055
[5] Fujita T, Azuma Y, Fukuyama R, et al. Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling[J]. J Cell Biol, 2004, 166(1):85-95. doi: 10.1083/jcb.200401138.
doi: 10.1083/jcb.200401138
[6] Cai SX, Liu AR, He HL, et al. Stable genetic alterations of beta-catenin and ROR2 regulate the Wnt pathway, affect the fate of MSCs[J]. J Cell Physiol, 2014, 229(6):791-800. doi: 10.1002/jcp.24500.
doi: 10.1002/jcp.v229.6
[7] Wang J, Liu D, Guo B, et al. Role of biphasic calcium phosphate ceramic-mediated secretion of signaling molecules by macrophages in migration and osteoblastic differentiation of MSCs[J]. Acta Biomater, 2017, 51:447-460. doi: 10.1016/j.actbio.2017.01.059.
doi: 10.1016/j.actbio.2017.01.059
[8] Sandberg OH, Tatting L, Bernhardsson ME, et al. Temporal role of macrophages in cancellous bone healing[J]. Bone, 2017, 101:129-133. doi: 10.1016/j.bone.2017.04.004.
doi: S8756-3282(17)30143-6 pmid: 28414141
[9] Pajarinen J, Lin T, Gibon E, et al. Mesenchymal stem cell-macrophage crosstalk and bone healing[J]. Biomaterials, 2019, 196:80-89. doi: 10.1016/j.biomaterials.2017.12.025.
doi: S0142-9612(17)30834-7 pmid: 29329642
[10] Wasnik S, Rundle CH, Baylink DJ, et al. 1,25-Dihydroxyvitamin D suppresses M1 macrophages and promotes M2 differentiation at bone injury sites[J]. JCI Insight, 2018, 3(17):e98773. doi: 10.1172/jci.insight.98773.
doi: 10.1172/jci.insight.98773
[11] Lim RZ, Li L, Yong EL, et al. STAT-3 regulation of CXCR4 is necessary for the prenylflavonoid Icaritin to enhance mesenchymal stem cell proliferation, migration and osteogenic differentiation[J]. BBA-Gen Subjects, 2018, 1862(7):1680-1692. doi: 10.1016/j.bbagen.2018.04.016.
doi: S0304-4165(18)30109-0 pmid: 29679717
[12] Sanghani-Kerai A, Coathup M, Samazideh S, et al. Osteoporosis and ageing affects the migration of stem cells and this is ameliorated by transfection with CXCR4[J]. Bone Joint Res, 2017, 6(6):358-365. doi: 10.1302/2046-3758.66.BJR-2016-0259.R1.
doi: 10.1302/2046-3758.66.BJR-2016-0259.R1 pmid: 28576885
[13] Li A, Xia X, Yeh J, et al. PDGF-AA promotes osteogenic differentiation and migration of mesenchymal stem cell by down-regulating PDGFR alpha and derepressing BMP-Smad1/5/8 signaling[J]. PLoS One, 2014, 9(12):e113785. doi: 10.1371/journal.pone.0113785.
doi: 10.1371/journal.pone.0113785
[14] Wang Y, Xu J, Zhang X, et al. TNF-alpha-induced LRG1 promotes angiogenesis and mesenchymal stem cell migration in the subchondral bone during osteoarthritis[J]. Cell Death Dis, 2017, 8(3):e2715. doi: 10.1038/cddis.2017.129.
doi: 10.1038/cddis.2017.129
[15] Du Z, Wang L, Zhao Y, et al. Sympathetic denervation-induced MSC mobilization in distraction osteogenesis associates with inhibition of MSC migration and osteogenesis by norepinephrine/adrb3[J]. PLoS One, 2014, 9(8):e105976. doi: 10.1371/journal.pone.0105976.
doi: 10.1371/journal.pone.0105976
[16] Kitaori T, Ito H, Schwarz EM, et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model[J]. Arthritis Rheum, 2009, 60(3):813-823. doi: 10.1002/art.24330.
doi: 10.1002/art.v60:3
[17] Argentati C, Morena F, Tortorella I, et al. Insight into mechanobiology: how stem cells feel mechanical forces and orchestrate biological functions[J]. Int J Mol Sci, 2019, 20(21):5337. doi: 10.3390/ijms20215337.
doi: 10.3390/ijms20215337
[18] Frith JE, Kusuma GD, Carthew J, et al. Mechanically-sensitive miRNAs bias human mesenchymal stem cell fate via mTOR signalling[J]. Nat Commun, 2018, 9(1):257. doi: 10.1038/s41467-017-02486-0.
doi: 10.1038/s41467-017-02486-0
[19] Plotnikov SV, Pasapera AM, Sabass B, et al. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration[J]. Cell, 2012, 151(7):1513-1527. doi: 10.1016/j.cell.2012.11.034.
doi: 10.1016/j.cell.2012.11.034 pmid: 23260139
[20] Kumar S, Ponnazhagan S. Bone homing of mesenchymal stem cells by ectopic alpha 4 integrin expression[J]. Faseb J, 2007, 21(14):3917-3927. doi: 10.1096/fj.07-8275com.
doi: 10.1096/fsb2.v21.14
[21] Lin C, Tao B, Deng Y, et al. Matrix promote mesenchymal stromal cell migration with improved deformation via nuclear stiffness decrease[J]. Biomaterials, 2019, 217:119300. doi: 10.1016/j.biomaterials.2019.119300.
doi: 10.1016/j.biomaterials.2019.119300
[22] Dejaeger M, Bohm AM, Dirckx N, et al. Integrin-linked kinase regulates bone formation by controlling cytoskeletal organization and modulating BMP and Wnt signaling in osteoprogenitors[J]. J Bone Miner Res, 2017, 32(10):2087-2102. doi: 10.1002/jbmr.3190.
doi: 10.1002/jbmr.3190 pmid: 28574598
[23] Ichida M, Yui Y, Yoshioka K, et al. Changes in cell migration of mesenchymal cells during osteogenic differentiation[J]. FEBS Lett, 2011, 585(24):4018-4024. doi: 10.1016/j.febslet.2011.11.014.
doi: 10.1016/j.febslet.2011.11.014
[24] Lien CY, Ho KC, Lee OK, et al. Restoration of bone mass and strength in glucocorticoid-treated mice by systemic transplantation of CXCR4 and cbfa-1 co-expressing mesenchymal stem cells[J]. J Bone Miner Res, 2009, 24(5):837-848. doi: 10.1359/jbmr.081257.
doi: 10.1359/jbmr.081257
[25] Jiang X, Xu C, Shi H, et al. PTH1-34 improves bone healing by promoting angiogenesis and facilitating MSCs migration and differentiation in a stabilized fracture mouse model[J]. PLoS One, 2019, 14(12):e0226163. doi: 10.1371/journal.pone.0226163.
doi: 10.1371/journal.pone.0226163
[26] Sheyn D, Shapiro G, Tawackoli W, et al. PTH induces systemically administered mesenchymal stem cells to migrate to and regenerate spine injuries[J]. Mol Ther, 2016, 24(2):318-330. doi: 10.1038/mt.2015.211.
doi: 10.1038/mt.2015.211
[27] He J, Meng G, Yao R, et al. The essential role of inorganic substrate in the migration and osteoblastic differentiation of mesenchymal stem cells[J]. J Mech Behav Biomed Mater, 2016, 59:353-365. doi: 10.1016/j.jmbbm.2016.02.013.
doi: 10.1016/j.jmbbm.2016.02.013
[28] Wang B, Guo Y, Chen X, et al. Nanoparticle-modified chitosan-agarose-gelatin scaffold for sustained release of SDF-1 and BMP-2[J]. Int J Nanomedicine, 2018, 13:7395-7408. doi: 10.2147/IJN.S180859.
doi: 10.2147/IJN
[29] Kamali A, Oryan A, Hosseini S, et al. Cannabidiol-loaded microspheres incorporated into osteoconductive scaffold enhance mesenchymal stem cell recruitment and regeneration of critical-sized bone defects[J]. Mater Sci Eng C Mater Biol Appl, 2019, 101:64-75. doi: 10.1016/j.msec.2019.03.070.
doi: 10.1016/j.msec.2019.03.070
[30] Zhang J, Liu X, Li H, et al. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway[J]. Stem Cell Res Ther, 2016, 7(1):136. doi: 10.1186/s13287-016-0391-3.
doi: 10.1186/s13287-016-0391-3
[31] Marinova-Mutafchieva L, Williams RO, Funa K, et al. Inflammation is preceded by tumor necrosis factor-dependent infiltration of mesenchymal cells in experimental arthritis[J]. Arthritis Rheum, 2002, 46(2):507-513. doi: 10.1002/art.10126.
doi: 10.1002/(ISSN)1529-0131
[32] Tso GH, Law HK, Tu W, et al. Phagocytosis of apoptotic cells modulates mesenchymal stem cells osteogenic differentiation to enhance IL-17 and RANKL expression on CD4+ T cells[J]. Stem Cells, 2010, 28(5):939-954. doi: 10.1002/stem.406.
[1] ZHONG qijian,JIN Tingting,PENG Yu,CHEN Weixiong,LI Jinsong. The effect of silencing the endoplasmic reticulum stress-related protein calnexin on the proliferation, invasion, and migration of tongue squamous cell carcinoma cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(8): 535-540.
[2] CHEN Zetao,LIN Yixiong,YANG Jieting,HUANG Baoxin,CHEN Zhuofan. Research and development concept of barrier membranes based on “ immune microenvironment regulation” [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(8): 505-514.
[3] ZUO Xinhui,LI Jun,HAN Xiangzhen,LIU Xiaoyuan,HE Huiyu. Effects of hypoxia inducible factor-1α on osteogenic differentiation and angiogenesis related factors of bone marrow mesenchymal stem cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(7): 449-455.
[4] WANG Min,JIANG Nan,ZHU Songsong. A novel biomimetic micro/nano hierarchical interface of titanium enhances adhesion, proliferation and osteogenic differentiation of bone marrow mesenchymal cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(4): 226-233.
[5] LI Tianle,CHANG Xinnan,QIU Xutong,FU Di,ZHANG Tao. Effect of mechanical stimulation on the differentiation of stem cells in periodontal bone tissue engineering [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(4): 273-278.
[6] CHEN Zece,LONG Qian,GUAN Xiaoyan,LIU Jianguo. Research progress on microRNA-21 in regulating osteoclast and osteogenic differentiation in orthodontic treatment [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(3): 211-216.
[7] SHI Weiwei,DING Yi,TIAN Weidong,GUO Shujuan. Exosomes derived from lipopolysaccharide-preconditioned dental folic cells regulate osteogenic differentiation of periodontal ligament cell in periodontitis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(2): 81-87.
[8] HU Kaijin, MA Zhen, WANG Yiming, DENG Tiange. New progress in the pathogenesis of traumatic temporomandibular joint ankylosis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(12): 793-800.
[9] LI Qi, WANG He, HUANG Zijun, HAN Qianqian. Research progress on the regulatory mechanism of estrogen in periodontal ligament cells repair and the reconstruction of periodontal tissue [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(11): 787-792.
[10] SUN Jingxuan,LI Yanping,PAN Shuang,HE Lina,SUN Xiangyu,ZHANG Shuang,NIU Yumei. Effects of graphene on the proliferation, migration and morphology of dental pulp stem cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(10): 656-662.
[11] BIN Zhiwen,WANG Fang,HOU Jinsong. Research progress on the reconstruction of mandibular defects in adolescents [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(10): 711-715.
[12] YANG Jin,WU Feifei,GAO Qinghong,LI Xiaoyu,MANABU Kato,CHENG Ran,ZHOU Hongmei. Effects of TGF-β1 on the migration of oral cancer-associated fibroblasts in two and three dimensional co-culture models [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(9): 562-568.
[13] XU Hongwei,HAN Bing. Research progress in mechanical strength enhancement methods of jaw tissue engineering scaffolds [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(9): 600-606.
[14] CHEN Songling,ZHU Shuangxi. The role of the membrane of the maxillary sinus in space osteogenesis under the sinus floor after elevation of the sinus floor [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(8): 477-486.
[15] QIN Qing,SONG Yang,LIU Jia,LI Qiang. Effects of casein kinase 2 interacting protein-1 on the osteogenic differentiation ability of human periodontal ligament stem cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(7): 421-426.
Full text



[1] . [J]. journal1, 2016, 24(1): 58 -60 .
[2] Juan LI,Ting HUANG,Wen XUE,Hai-yan LI. Clinical efficacy of basic periodontal therapy combined with local medication for erosive oral lichen planus[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(3): 162 -165 .
[3] Ming CHEN,Xi CHEN,Zhen-ting ZHANG. The precision comparison of the denture occlusal plane preparation by the occlusal plane plate between experienced and newly-graduated dentists[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(3): 173 -176 .
[4] Zhong-juan TAN,Yue-ping ZHAO,Yuan-yuan LUO. The research progress of dental pulp regeneration[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(6): 374 -377 .
[5] Lan LIAO, Lijun ZENG. Updated research on digitalization in aesthetic restoration[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(7): 409 -414 .
[6] Yan-fei CHENG,Yong-rong ZHONG. Study of the cellular growth inhibited by tetrandrine with the expression of β-catenin in oral squamous cell carcinoma cell line[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(8): 464 -468 .
[7] LI Chun,LI Yan-hong,LIU Juan. Application of probiotics for dental caries prevention in children[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(9): 558 -560 .
[8] Mingyu SUN, Hanjiang WU. Research progresses in occult lymph node metastasis of oral squamous cancer[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(1): 61 -65 .
[9] Qian-qian HAN,Zhao LIU,Li JIANG,Hui-yi TANG,Xiao-na LI. Effects of LMK-235 on osteoblast/odontoblast differentiation in hPDLCs[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(7): 390 -394 .
[10] Nu MI,Ying GUO,Xiao-yu YANG. Clinical evaluation of anterior teeth aesthetic restoration with thin porcelain laminate veneer[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(10): 589 -593 .
This work is licensed under a Creative Commons Attribution 3.0 License.