Journal of Prevention and Treatment for Stomatological Diseases ›› 2021, Vol. 29 ›› Issue (8): 505-514.DOI: 10.12016/j.issn.2096-1456.2021.08.001
• Expert Forum • Previous Articles Next Articles
CHEN Zetao1(),LIN Yixiong1,YANG Jieting2,HUANG Baoxin2,CHEN Zhuofan3
Received:
2020-10-16
Revised:
2021-01-19
Online:
2021-08-20
Published:
2021-05-13
Contact:
Zetao CHEN
Supported by:
通讯作者:
陈泽涛
作者简介:
陈泽涛,研究员,博士研究生导师,就职于中山大学光华口腔医学院·附属口腔医院。现任中山大学科学研究院基地处副处长,广东省牙颌系统修复重建技术与材料工程技术研究中心副主任。担任中华口腔医学会口腔生物医学专业委员会常务委员,广东省口腔医学会口腔种植专业委员会委员,中国生物材料学会青年委员会委员;入选国家海外高层次人才计划。从事口腔种植学、口腔材料学相关医教研工作,聚焦口腔软硬组织再生修复的免疫机制及其调控研究,成果发表于Advanced Functional Materials,ACS Nano,Materials Today,Biomaterials等期刊;共发表SCI学术论文37篇,以第一作者、通信作者发表影响因子大于10的SCI学术论文7篇;主编《口腔基础研究导论》(人民卫生出版社),参编英语专著《The Immune Response toImplanted Materials and Devices》;主持国家自然科学基金项目(面上、青年)、广东省杰出青年科学基金项目、ITI Research Grant、The Osteology Research Grant等国内国际项目12项。
基金资助:
CLC Number:
CHEN Zetao,LIN Yixiong,YANG Jieting,HUANG Baoxin,CHEN Zhuofan. Research and development concept of barrier membranes based on “ immune microenvironment regulation”[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(8): 505-514.
陈泽涛,林义雄,杨杰婷,黄宝鑫,陈卓凡. 基于“免疫微环境调控”的屏障膜研发理念[J]. 口腔疾病防治, 2021, 29(8): 505-514.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.kqjbfz.com/EN/10.12016/j.issn.2096-1456.2021.08.001
Figure 1 Barrier membrane based on osteoimmunomodulation Based on an osteoimmunomodulation strategy, the development concept of barrier membranes emphasizes the manipulation of both physiochemical characteristics, including mechanical characteristics, and surface properties. Additionally, it introduces bioactive agents, such as metal ions, cytokines and antibiotics, to regulate the activation state and polarization of macrophages, thereby creating a favorable osteoimmunological microenvironment facilitating the osteogenic differentiation of MSCs and improving the osteogenic efficiency of barrier membranes. BMP-2: bone morphogenetic protein-2; TGF-β: transforming growth factor-β; VEGF: vascular endothelial growth factor; M-CSF: macrophage colony-stimulating factor; RANKL: receptor activator of NF-κB ligand; OPG: osteoprotegerin
Figure 2 Barrier membrane based on the “immunodegradation” strategy The development concept of an “immunodegradation” strategy emphasizes the modulation of cell-mediated degradation to regulate the degradation characteristics of barrier membranes. Manipulation of key cells and cytokines participating in membrane degradation could regulate the function of T cells and the phagocytosis of both macrophages and FBGCs, achieving efficient regulation of the degradation characteristics and osteogenic improvements of membranes. CXCL8: CXC chemokine ligand 8; CCL: C-C motif chemokine ligand; IL: interleukin
[1] |
Indurkar MS, Verma R. Evaluation of the prevalence and distribution of bone defects associated with chronic periodontitis using cone-beam computed tomography: a radiographic study[J]. J Interdisciplinary Dentistry, 2016,6(3):104-109. doi: 10.4103/2229-5194.201647.
DOI URL |
[2] |
Petrov SD, Drew HJ, Sun S. Sequencing osteotomes to overcome challenges presented by deficient bone quantity and quality in potential implant sites[J]. Quintessence Int, 2011,42(1):9-18.
PMID |
[3] |
陈泽涛, 王小双, 张琳珺. 基于“骨免疫微环境调控”的骨替代材料研发理念[J]. 口腔疾病防治, 2018,26(11):688-698. doi: 10.12016/j.issn.2096-1456.2018.11.002.
DOI |
Chen ZT, Wang XS, Zhang LJ. The concept of “osteoimmunomodulation” and its application in the development of “osteoimmune-smart” bone substitute materials[J]. J Prev Treat Stomatol Dis, 2018,26(11):688-698. doi: 10.12016/j.issn.2096-1456.2018.11.002.
DOI |
|
[4] |
曹钰彬, 刘畅, 潘韦霖, 等. 引导骨再生屏障膜改良的研究进展[J]. 华西口腔医学杂志, 2019,37(3), 325-329. doi: 10.7518/hxkq.2019.03.019.
DOI |
Cao YB, Liu C, Pan WL, et al. Research progress on the modification of guided bone regeneration membranes[J]. Hua xi kou qiang yi xue za zhi, 2019,37(3), 325-329. doi: 10.7518/hxkq.2019.03.019.
DOI |
|
[5] | Hurley LA, Stinchfield FE, Bassett AL, et al. The role of soft tissues in osteogenesis. An experimental study of canine spine fusions[J]. J Bone Joint Surg Am, 1959, 41-A:1243-1254. |
[6] |
Elnayef B, Monje A, Gargallo-Albiol J, et al. Vertical ridge augmentation in the atrophic mandible: a systematic review and meta-analysis[J]. Int J Oral Maxillofac Implants, 2017,32(2):291-312. doi: 10.11607/jomi.4861.
DOI PMID |
[7] |
Lim G, Lin GH, Monje A, et al. Wound healing complications following guided bone regeneration for ridge augmentation: a systematic review and meta-analysis[J]. Int J Oral Maxillofac Implants, 2018,33(1):41-50. doi: 10.11607/jomi.5581.
DOI |
[8] | Dahlin C, Sennerby L, Lekholm U, et al. Generation of new bone around Titanium implants using a membrane technique: an experimental study in rabbits[J]. Int J Oral Maxillofac Implants, 1989,4(1):19-25. |
[9] |
Nyman S, Gottlow J, Karring T, et al. The regenerative potential of the periodontal ligament. An experimental study in the monkey[J]. J Clin Periodontol, 1982,9(3):257-265. doi: 10.1111/j.1600-051x.1982.tb02065.x.
DOI PMID |
[10] |
Canullo L, Sisti A. Early implant loading after vertical ridge augmentation (VRA) using e-PTFE titanium-reinforced membrane and nano-structured hydroxyapatite: 2-year prospective study[J]. Eur J Oral Implantol, 2010,3(1):59-69.
PMID |
[11] |
Soldatos NK, Stylianou P, Koidou VP, et al. Limitations and options using resorbable versus nonresorbable membranes for successful guided bone regeneration[J]. Quintessence Int, 2017,48(2):131-147. doi: 10.3290/j.qi.a37133.
DOI |
[12] |
Rowe MJ, Kamocki K, Pankajakshan D, et al. Dimensionally stable and bioactive membrane for guided bone regeneration: an in vitro study[J]. J Biomed Mater Res B Appl Biomater, 2016,104(3):594-605. doi: 10.1002/jbm.b.33430.
DOI URL |
[13] |
Jang YS, Moon SH, Nguyen TT, et al. In vivo bone regeneration by differently designed Titanium membrane with or without surface treatment: a study in rat calvarial defects[J]. J Tissue Eng, 2019,10:2041731419831466. doi: 10.1177/2041731419831466.
DOI |
[14] |
Naung NY, Shehata E, Van Sickels JE. Resorbable versus nonresorbable membranes: when and why?[J]. Dent Clin North Am, 2019,63(3):419-431. doi: 10.1016/j.cden.2019.02.008.
DOI URL |
[15] |
Sheikh Z, Qureshi J, Alshahrani AM, et al. Collagen based barrier membranes for periodontal guided bone regeneration applications[J]. Odontology, 2017,105(1):1-12. doi: 10.1007/s10266-016-0267-0.
DOI URL |
[16] |
Miller N, Penaud J, Foliguet B, et al. Resorption rates of 2 commercially available bioresorbable membranes. A histomorphometric study in a rabbit model[J]. J Clin Periodontol, 1996,23(12):1051-1059. doi: 10.1111/j.1600-051x.1996.tb01803.x.
DOI PMID |
[17] |
Wang J, Wang L, Zhou Z, et al. Biodegradable polymer membranes applied in guided bone/tissue regeneration: a review[J]. Polymers (Basel), 2016,8(4):115. doi: 10.3390/polym8040115.
DOI URL |
[18] |
Gentile P, Chiono V, Tonda-Turo C, et al. Polymeric membranes for guided bone regeneration[J]. Biotechnol J, 2011,6(10):1187-1197. doi: 10.1002/biot.201100294.
DOI URL |
[19] |
Zhang HY, Jiang HB, Ryu JH, et al. Comparing properties of variable Pore-Sized 3D-Printed PLA membrane with conventional PLA membrane for guided bone/tissue regeneration[J]. Materials (Basel), 2019,12(10):1718. doi: 10.3390/ma12101718.
DOI URL |
[20] |
Aldemir DB, Dikici S, Reilly GC, et al. A novel bilayer polycaprolactone membrane for guided bone regeneration: combining electrospinning and emulsion templating[J]. Materials (Basel), 2019,12(16):2643. doi: 10.3390/ma12162643.
DOI URL |
[21] |
Sheikh Z, Brooks PJ, Barzilay O, et al. Macrophages, foreign body giant cells and their response to implantable biomaterials[J]. Materials (Basel), 2015,8(9):5671-5701. doi: 10.3390/ma8095269.
DOI URL |
[22] |
Lucke S, Hoene A, Walschus U, et al. Acute and chronic local inflammatory reaction after implantation of different extracellular porcine dermis collagen matrices in rats[J]. Biomed Res Int, 2015: 938059. doi: 10.1155/2015/938059.
DOI |
[23] |
Chu C, Liu L, Rung S, et al. Modulation of foreign body reaction and macrophage phenotypes concerning microenvironment[J]. J Biomed Mater Res A, 2020,108(1):127-135. doi: 10.1002/jbm.a.36798.
DOI URL |
[24] |
Chu CY, Liu L, Wang YF, et al. Macrophage phenotype in the epigallocatechin-3-gallate (EGCG)-modified collagen determines foreign body reaction[J]. J Tissue Eng Regen Med, 2018,12(6):1499-1507. doi: 10.1002/term.2687.
DOI URL |
[25] |
Franz S, Rammelt S, Scharnweber D, et al. Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials[J]. Biomaterials, 2011,32(28):6692-6709. doi: 10.1016/j.biomaterials.2011.05.078.
DOI URL |
[26] |
Hotchkiss KM, Reddy GB, Hyzy SL, et al. Titanium surface characteristics, including topography and wettability, alter macrophage activation[J]. Acta Biomater, 2016,31:425-434. doi: 10.1016/j.actbio.2015.12.003.
DOI PMID |
[27] |
Dobrovolskaia MA, Mcneil SE. Immunological properties of engineered nanomaterials[J]. Nat Nanotechnol, 2007,2(8):469-478. doi: 10.1038/nnano.2007.223.
DOI PMID |
[28] |
Xie Y, Hu C, Feng Y, et al. Osteoimmunomodulatory effects of biomaterial modification strategies on macrophage polarization and bone regeneration[J]. Regen Biomater, 2020,7(3):233-245. doi: 10.1093/rb/rbaa006.
DOI URL |
[29] |
Chu C, Deng J, Xiang L, et al. Evaluation of epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts[J]. Mater Sci Eng C Mater Biol Appl, 2016,67:386-394. doi: 10.1016/j.msec.2016.05.021.
DOI URL |
[30] |
Chu CY, Deng J, Man Y, et al. Evaluation of nanohydroxyapaptite (nano-HA) coated epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes[J]. Mater Sci Eng C Mater Biol Appl, 2017,78:258-264. doi: 10.1016/j.msec.2017.04.069.
DOI URL |
[31] |
Chu CY, Deng J, Sun XC, et al. Collagen membrane and immune response in guided bone regeneration: recent progress and perspectives[J]. Tissue Eng Part B Rev, 2017,23(5):421-435. doi: 10.1089/ten.teb.2016.0463.
DOI URL |
[32] |
Okamoto K, Nakashima T, Shinohara M, et al. Osteoimmunology: the conceptual framework unifying the immune and skeletal systems[J]. Physiol Rev, 2017,97(4):1295-1349. doi: 10.1152/physrev.00036.2016.
DOI URL |
[33] | Yavropoulou MP, Yovos JG. Osteoclastogenesis--current knowledge and future perspectives[J]. J Musculoskelet Neuronal Interact, 2008,8(3):204-216. |
[34] |
Chen Z, Klein T, Murray RZ, et al. Osteoimmunomodulation for the development of advanced bone biomaterials[J]. Materials Today, 2016,19(6) : 304-321. doi: 10.1016/j.mattod.2015.11.004.
DOI URL |
[35] |
Gruber R. Osteoimmunology: inflammatory osteolysis and regeneration of the alveolar bone[J]. J Clin Periodontol, 2019,46(Suppl 21):52-69. doi: 10.1111/jcpe.13056.
DOI URL |
[36] |
Shields LB, Raque GH, Glassman SD, et al. Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion[J]. Spine (Phila Pa 1976), 2006,31(5):542-547. doi: 10.1097/01.brs.0000201424.27509.72.
DOI URL |
[37] |
Zara JN, Siu RK, Zhang X, et al. High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo[J]. Tissue Eng Part A, 2011,17(9/10):1389-1399. doi: 10.1089/ten.TEA.2010.0555.
DOI URL |
[38] |
Liu W, Zhang X. Receptor activator of nuclear factor-κB ligand (RANKL)/RANK/osteoprotegerin system in bone and other tissues (review)[J]. Mol Med Rep, 2015,11(5):3212-3218. doi: 10.3892/mmr.2015.3152.
DOI URL |
[39] |
Theill LE, Boyle WJ, Penninger JM. RANK-L and RANK: T cells, bone loss, and mammalian evolution[J]. Annu Rev Immunol, 2002,20:795-823. doi: 10.1146/annurev.immunol.20.100301.064753.
DOI PMID |
[40] |
Horwood NJ, Kartsogiannis V, Quinn JM, et al. Activated T lymphocytes support osteoclast formation in vitro[J]. Biochem Biophys Res Commun, 1999,265(1):144-150. doi: 10.1006/bbrc.1999.1623.
DOI URL |
[41] |
Takayanagi H, Ogasawara K, Hida S, et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma[J]. Nature, 2000,408(6812):600-605. doi: 10.1038/35046102.
DOI PMID |
[42] |
Könnecke I, Serra A, El Khassawna T, et al. T and B cells participate in bone repair by infiltrating the fracture callus in a two-wave fashion[J]. Bone, 2014,64:155-165. doi: 10.1016/j.bone.2014.03.052.
DOI PMID |
[43] |
Li Y, Toraldo G, Li A, et al. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo[J]. Blood, 2007,109(9):3839-3848. doi: 10.1182/blood-2006-07-037994.
DOI URL |
[44] |
Shapouri-Moghaddam S, Mohammadian , Vazini S, et al. Macrophage plasticity, polarization,and function in health and disease[J]. J Cell Physiol, 2018,233(9):6425-6440. doi: 10.1002/jcp.26429.
DOI |
[45] |
Zheng Z, Chen Y, Hong H, et al. The “yin and yang” of immunomodulatory Magnesium-Enriched graphene oxide nanoscrolls decorated biomimetic scaffolds in promoting bone regeneration[J]. Adv Healthc Mater, 2021,10(2):e2000631. doi: 10.1002/adhm.202000631.
DOI |
[46] |
Schlundt C, El Khassawna T, Serra A, et al. Macrophages in bone fracture healing: Their essential role in endochondral ossification[J]. Bone, 2018,106:78-89. doi: 10.1016/j.bone.2015.10.019.
DOI PMID |
[47] |
Lee J, Byun H, Madhurakkat PS, et al. Current advances in immunomodulatory biomaterials for bone regeneration[J]. Adv Healthc Mater, 2019,8(4):e1801106. doi: 10.1002/adhm.201801106.
DOI |
[48] | Jamalpoor Z, Asgari A, Lashkari MH, et al. Modulation of macrophage polarization for bone tissue engineering applications[J]. Iran J Allergy Asthma Immunol, 2018,17(5):398-408. |
[49] |
Jin SS, He DQ, Luo D, et al. A biomimetic hierarchical nanointerface orchestrates macrophage polarization and mesenchymal stem cell recruitment to promote endogenous bone regeneration[J]. ACS Nano, 2019,13(6):6581-6595. doi: 10.1021/acsnano.9b00489.
DOI URL |
[50] |
Norowski PJ, Fujiwara T, Clem WC, et al. Novel naturally crosslinked electrospun nanofibrous chitosan mats for guided bone regeneration membranes: material characterization and cytocompatibility[J]. J Tissue Eng Regen Med, 2015,9(5):577-583. doi: 10.1002/term.1648.
DOI PMID |
[51] |
Rothamel D, Schwarz F, Sager M, et al. Biodegradation of differently cross-linked collagen membranes: an experimental study in the rat[J]. Clin Oral Implants Res, 2005,16(3):369-378. doi: 10.1111/j.1600-0501.2005.01108.x.
DOI URL |
[52] |
Chen Z, Chen L, Liu R, et al. The osteoimmunomodulatory property of a barrier collagen membrane and its manipulation via coating nanometer-sized bioactive glass to improve guided bone regeneration[J]. Biomater Sci, 2018,6(5):1007-1019. doi: 10.1039/c7bm00869d.
DOI URL |
[53] |
Minardi S, Corradetti B, Taraballi F, et al. IL-4 release from a biomimetic scaffold for the temporally controlled modulation of macrophage response[J]. Ann Biomed Eng, 2016,44(6):2008-2019. doi: 10.1007/s10439-016-1580-z.
DOI PMID |
[54] |
Chu CY, Wang YF, Wang YJ, et al. Evaluation of epigallocatechin-3-gallate (EGCG) modified collagen in guided bone regeneration (GBR) surgery and modulation of macrophage phenotype[J]. Mater Sci Eng C Mater Biol Appl, 2019,99:73-82. doi: 10.1016/j.msec.2019.01.083.
DOI URL |
[55] |
Fenbo M, Xingyu X, Bin T. Strontium chondroitin sulfate/silk fibroin blend membrane containing microporous structure modulates macrophage responses for guided bone regeneration[J]. Carbohydr Polym, 2019,213:266-275. doi: 10.1016/j.carbpol.2019.02.068.
DOI PMID |
[56] |
Wang X, Ao J, Lu H, et al. Osteoimmune modulation and guided osteogenesis promoted by barrier membranes incorporated with S-nitrosoglutathione (GSNO) and mesenchymal stem cell-derived exosomes[J]. Int J Nanomedicine, 2020,15:3483-3496. doi: 10.2147/IJN.S248741.
DOI URL |
[57] |
Mathew A, Vaquette C, Hashimi S, et al. Antimicrobial and immunomodulatory surface-functionalized electrospun membranes for bone regeneration[J]. Adv Healthc Mater, 2017,6(10):201601345. doi: 10.1002/adhm.201601345.
DOI |
[58] |
Fang J, Liu R, Chen S, et al. Tuning the immune reaction to manipulate the cell-mediated degradation of a collagen barrier membrane[J]. Acta Biomater, 2020,109:95-108. doi: 10.1016/j.actbio.2020.03.038.
DOI URL |
[59] |
Tanneberger AM, Al-Maawi S, Herrera-Vizcaíno C, et al. Multinucleated giant cells within the in vivo implantation bed of a collagen-based biomaterial determine its degradation pattern[J]. Clin Oral Investig, 2021,25(3):859-873. doi: 10.1007/s00784-020-03373-7.
DOI URL |
[60] |
Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials[J]. Semin Immunol, 2008,20(2):86-100. doi: 10.1016/j.smim.2007.11.004.
DOI PMID |
[61] |
Goswami R, Arya RK, Biswas D, et al. Transient receptor potential vanilloid 4 is required for foreign body response and giant cell formation[J]. Am J Pathol, 2019,189(8):1505-1512. doi: 10.1016/j.ajpath.2019.04.016.
DOI PMID |
[62] |
Chia-Lai PJ, Orlowska A, Al-Maawi S, et al. Sugar-based collagen membrane cross-linking increases barrier capacity of membranes[J]. Clin Oral Investig, 2018,22(4):1851-1863. doi: 10.1007/s00784-017-2281-1.
DOI PMID |
[63] |
Herrera-Vizcaíno H, Al-Maawi A, Sader , et al. Modification of collagen-based sponges can induce an upshift of the early inflammatory response and a chronic inflammatory reaction led by M1 macrophages: an in vivo study[J]. Clin Oral Investig, 2020,24(10):3485-3500. doi: 10.1007/s00784-020-03219-2.
DOI PMID |
[1] | ZUO Xinhui,LI Jun,HAN Xiangzhen,LIU Xiaoyuan,HE Huiyu. Effects of hypoxia inducible factor-1α on osteogenic differentiation and angiogenesis related factors of bone marrow mesenchymal stem cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(7): 449-455. |
[2] | LI Peihan,LANG Kai,SONG Wen. Construction of a curcumin-siRNA co-delivery system based on mesoporous silica and its effect on M2-type polarization of macrophages [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(5): 306-313. |
[3] | ZHOU Anqi,LIU Jiayi,JIA Yinan,XIANG Lin. Research progress on the Hippo-YAP signaling pathway mediated osteoimmunology in modulating implant osseointegration [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(5): 334-339. |
[4] | WANG Min,JIANG Nan,ZHU Songsong. A novel biomimetic micro/nano hierarchical interface of titanium enhances adhesion, proliferation and osteogenic differentiation of bone marrow mesenchymal cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(4): 226-233. |
[5] | LI Tianle,CHANG Xinnan,QIU Xutong,FU Di,ZHANG Tao. Effect of mechanical stimulation on the differentiation of stem cells in periodontal bone tissue engineering [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(4): 273-278. |
[6] | CHEN Zece,LONG Qian,GUAN Xiaoyan,LIU Jianguo. Research progress on microRNA-21 in regulating osteoclast and osteogenic differentiation in orthodontic treatment [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(3): 211-216. |
[7] | SHI Weiwei,DING Yi,TIAN Weidong,GUO Shujuan. Exosomes derived from lipopolysaccharide-preconditioned dental folic cells regulate osteogenic differentiation of periodontal ligament cell in periodontitis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(2): 81-87. |
[8] | HU Kaijin, MA Zhen, WANG Yiming, DENG Tiange. New progress in the pathogenesis of traumatic temporomandibular joint ankylosis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(12): 793-800. |
[9] | YAN Shanyu,MEI Hongxiang,LI Juan. Role of mesenchymal stem cells migration in bone injury repair [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(12): 854-858. |
[10] | ZHANG Kai,LIU Xiaoyuan,LI Lei,LI Jun,HAN Xiangzhen,HE Huiyu. Effect of cell sheet combined with 3D printing an antler powder/silk fibroin/polyvinyl alcohol scaffold on the repair of mandibular defects in sheep [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(10): 669-676. |
[11] | XU Hongwei,HAN Bing. Research progress in mechanical strength enhancement methods of jaw tissue engineering scaffolds [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(9): 600-606. |
[12] | CHEN Songling,ZHU Shuangxi. The role of the membrane of the maxillary sinus in space osteogenesis under the sinus floor after elevation of the sinus floor [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(8): 477-486. |
[13] | QIN Qing,SONG Yang,LIU Jia,LI Qiang. Effects of casein kinase 2 interacting protein-1 on the osteogenic differentiation ability of human periodontal ligament stem cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(7): 421-426. |
[14] | HE Mengjiao,LI Lisheng,CHEN Yuling,LUO Kai. Research progress on cell sheet technology and its application in periodontal tissue regeneration [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(7): 458-462. |
[15] | XIAO Wenlan,HU Chen,RONG Sheng′an,QU Yili. Clinical application of autogenous dentin as a bone graft material [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(6): 394-398. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
This work is licensed under Creative Commons Attribution 3.0 License.