Journal of Prevention and Treatment for Stomatological Diseases ›› 2021, Vol. 29 ›› Issue (8): 529-534.DOI: 10.12016/j.issn.2096-1456.2021.08.004
• Basic Study • Previous Articles Next Articles
LUO Xiaona1(),LIU Xianghui1,WANG Bo2,LIU Xin1,XIE Xiaohua1(
)
Received:
2020-12-15
Revised:
2021-02-08
Online:
2021-08-20
Published:
2021-05-13
Contact:
Xiaohua XIE
Supported by:
通讯作者:
谢晓华
作者简介:
罗晓娜,医师,硕士,Email:基金资助:
CLC Number:
LUO Xiaona,LIU Xianghui,WANG Bo,LIU Xin,XIE Xiaohua. The effect of inhibiting p38 MAPK on the expression of genes related to enamel development in mice[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(8): 529-534.
罗晓娜,刘向晖,王博,刘昕,谢晓华. 抑制p38 MAPK对小鼠釉质发育相关基因表达的影响[J]. 口腔疾病防治, 2021, 29(8): 529-534.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.kqjbfz.com/EN/10.12016/j.issn.2096-1456.2021.08.004
Figure 1 The appearance of the tooth germ of the mouse mandibular first molar 2 days after birth observed under a stereomicroscope a: the arrow points to the enamel epithelium of the tooth germ; b: the area enclosed by the solid yellow line is the enamel epithelium of the mandibular first molar tooth germ
Primers | Primer sequence,5′-3′ |
---|---|
Runx2 | Forward: GAAATGCCTCCGCTGTTATG |
Reverse: GCTTCTGTCTGTGCCTTCTTG | |
Osx | Forward: GGCGTCCTCTCTGCTTGAG |
Reverse: GGGCTGAAAGGTCAGCGTAT | |
ODAM | Forward: GCAATAGTTGGATCTATCCCAGA |
Reverse: GAATGCCAGTAGAAGGAAGCC | |
AMTN | Forward: TGAAGATTTGGGAGGCTAACG |
Reverse: CTGGGACCACTGAATGGACAG | |
MMP20 | Forward: TGTCTAAGCTCAAGGTGCCCTGTT |
Reverse: TAAGTTGTCCATGTGGGTGCTGGA | |
KLK4 | Forward: AACCTAAGGGACAGGGCAGT |
Reverse: GACAGTATCGGCCTCAGGAA | |
GAPDH | Forward: TCCAGAACATCATCCCTGCCTCTA |
Reverse: ACAAAGTGGTCGTTGAGGGCAATG |
Table 1 Primers for real-time PCR
Primers | Primer sequence,5′-3′ |
---|---|
Runx2 | Forward: GAAATGCCTCCGCTGTTATG |
Reverse: GCTTCTGTCTGTGCCTTCTTG | |
Osx | Forward: GGCGTCCTCTCTGCTTGAG |
Reverse: GGGCTGAAAGGTCAGCGTAT | |
ODAM | Forward: GCAATAGTTGGATCTATCCCAGA |
Reverse: GAATGCCAGTAGAAGGAAGCC | |
AMTN | Forward: TGAAGATTTGGGAGGCTAACG |
Reverse: CTGGGACCACTGAATGGACAG | |
MMP20 | Forward: TGTCTAAGCTCAAGGTGCCCTGTT |
Reverse: TAAGTTGTCCATGTGGGTGCTGGA | |
KLK4 | Forward: AACCTAAGGGACAGGGCAGT |
Reverse: GACAGTATCGGCCTCAGGAA | |
GAPDH | Forward: TCCAGAACATCATCCCTGCCTCTA |
Reverse: ACAAAGTGGTCGTTGAGGGCAATG |
Figure 2 The phosphorylation of p38 in SB203580 treated enamel epithelium was detected by Western blot The phosphorylation level of p38 in the enamel epithelium of the SB203580 group was lower than that in the control group; p-p38: phosphorylated p38; **: P < 0.01 vs. the control group
Group | Runx2 | Osx |
---|---|---|
Control | 1.00 ± 0.04 | 1.00 ± 0.10 |
SB203580 | 0.74 ± 0.07 | 0.60 ± 0.07 |
t | 5.89 | 5.64 |
P | 0.004 | 0.005 |
Table 2 Real-time PCR to detect the expression levels of Runx2 and Osx in the enamel epithelium treated with SB203580 $\overline x$ ± s,n=3
Group | Runx2 | Osx |
---|---|---|
Control | 1.00 ± 0.04 | 1.00 ± 0.10 |
SB203580 | 0.74 ± 0.07 | 0.60 ± 0.07 |
t | 5.89 | 5.64 |
P | 0.004 | 0.005 |
Group | ODAM | AMTN | MMP20 | KLK4 |
---|---|---|---|---|
Control | 1.00 ± 0.10 | 1.00 ± 0.01 | 1.00 ± 0.04 | 1.00 ± 0.11 |
SB203580 | 0.39 ± 0.05 | 0.13 ± 0.01 | 0.52 ± 0.09 | 0.44 ± 0.01 |
t | 7.445 | 69.87 | 8.629 | 8.847 |
P | 0.018 | < 0.001 | 0.001 | 0.001 |
Table 3 Real-time PCR to detect the expression levels of ODAM, AMTN, MMP20 and KLK4 in the enamel epithelium treated with SB203580 $\overline x$ ± s,n=3
Group | ODAM | AMTN | MMP20 | KLK4 |
---|---|---|---|---|
Control | 1.00 ± 0.10 | 1.00 ± 0.01 | 1.00 ± 0.04 | 1.00 ± 0.11 |
SB203580 | 0.39 ± 0.05 | 0.13 ± 0.01 | 0.52 ± 0.09 | 0.44 ± 0.01 |
t | 7.445 | 69.87 | 8.629 | 8.847 |
P | 0.018 | < 0.001 | 0.001 | 0.001 |
[1] |
Hyun SY, Mun S, Kang KJ, et al. Amelogenic transcriptome profiling in ameloblast-like cells derived from adult gingival epithelial cells[J]. Sci Rep, 2019,9(1):3736. doi: 10.1038/s41598-019-40091-x.
DOI URL |
[2] |
Binder M, Biggs LC, Kronenberg MS, et al. Novel strategies for expansion of tooth epithelial stem cells and ameloblast generation[J]. Sci Rep, 2020,10(1):4963. doi: 10.1038/s41598-020-60708-w.
DOI URL |
[3] |
Imhof T, Rosenblatt K, Pryymachuk G, et al. Epithelial loss of mitochondrial oxidative phosphorylation leads to disturbed enamel and impaired dentin matrix formation in postnatal developed mouse incisor[J]. Sci Rep, 2020,10(1):22037. doi: 10.1038/s41598-020-77954-7.
DOI URL |
[4] |
Song W, Wang Y, Chu Q, et al. Loss of transforming growth factor-β1 in epithelium cells affects enamel formation in mice[J]. Arch Oral Biol, 2018,96(96):146-154. doi: 10.1016/j.archoralbio.2018. 09.003.
DOI URL |
[5] |
Machiya A, Tsukamoto S, Ohte S, et al. Smad4-dependent transforming growth factor-β family signaling regulates the differentiation of dental epithelial cells in adult mouse incisors[J]. Bone, 2020,137:115456. doi: 10.1016/j.bone.2020.115456.
DOI PMID |
[6] |
Malik Z, Alexiou M, Hallgrimsson B, et al. Bone morphogenetic protein 2 coordinates early tooth mineralization[J]. J Dent Res, 2018,97(7):835-843. doi: 10.1177/0022034518758044.
DOI URL |
[7] |
Martínez-Limón A, Joaquin M, Caballero M, et al. The p38 pathway: from biology to cancer therapy[J]. Int J Mol Sci, 2020,21(6):1913. doi: 10.3390/ijms21061913.
DOI URL |
[8] |
Greenblatt MB, Kim JM, Oh H, et al. p38α MAPK is required for tooth morphogenesis and enamel secretion[J]. J Biol Chem, 2015,290(1):284-295. doi: 10.1074/jbc.M114.599274.
DOI URL |
[9] |
Ali S, Farooq I. A review of the role of amelogenin protein in enamel formation and novel experimental techniques to study its function[J]. Protein Pept Lett, 2019,26(12):880-886. doi: 10.2174/0929866526666190731120018.
DOI URL |
[10] |
Lacruz RS. Enamel: molecular identity of its transepithelial ion transport system[J]. Cell Calcium, 2017,65(65):1-7. doi: 10.1016/j.ceca.2017.03.006.
DOI URL |
[11] |
董宁, 刘岩, 张田田, 等. ICR小鼠下颌第一磨牙牙胚发育的动态组织学观察[J]. 中国比较医学杂志, 2017,27(4):63-68. doi: 10.3969.j.issn.1671-7856.2017.04.011.
DOI |
Dong N, Liu Y, Zhang TT, et al. Establishment of first mandibular molar development of the time sequence in ICR mice[J]. Chin J Comparat Med, 2017,27(4):63-68. doi: 10.3969.j.issn.1671-7856.2017.04.011.
DOI |
|
[12] |
赵振宇, 李影, 王港, 等. p38丝裂原活化蛋白激酶对人乳牙牙髓干细胞成骨分化能力的影响[J]. 中华老年口腔医学杂志, 2019,17(3):129-134. doi: 10.19749/j.cn.cjgd.1672-2973.2019. 03.001.
DOI |
Zhao ZY, Li Y, Wang G, et al. Effect of p38 mitogen-activated protein kinase on osteogenic differentiation of human deciduous dental pulp stem cells[J]. Chin J Geriatric Dent, 2019,17(3):129-134. doi: 10.19749/j.cn.cjgd.1672-2973.2019.03.001.
DOI |
|
[13] |
Tosa I, Yamada D, Yasumatsu M, et al. Postnatal Runx2 deletion leads to low bone mass and adipocyte accumulation in mice bone tissues[J]. Biochem Biophys Res Commun, 2019,516(4):1229-1233. doi: 10.1016/j.bbrc.2019.07.014.
DOI URL |
[14] |
Togo Y, Takahashi K, Saito K, et al. Antagonistic functions of USAG-1 and RUNX2 during tooth development[J]. PLoS One, 2016,11(8):e0161067. doi: 10.1371/journal.pone.0161067.
DOI URL |
[15] |
Merametdjian L, Prud′homme T, Le CC, et al. Oro-dental phenotype in patients with RUNX2 duplication[J]. Eur J Med Genet, 2019,62(2):85-89. doi: 10.1016/j.ejmg.2018.05.019.
DOI PMID |
[16] |
Chu Q, Gao Y, Gao X, et al. Ablation of Runx2 in ameloblasts suppresses enamel maturation in tooth development[J]. Sci Rep, 2018,8(1):9594. doi: 10.1038/s41598-018-27873-5.
DOI URL |
[17] |
Liu X, Wang Y, Zhang L, et al. Combination of Runx2 and Cbfβ upregulates Amelotin gene expression in ameloblasts by directly interacting with cis enhancers during amelogenesis[J]. Mol Med Rep, 2018,17(4):6068-6076. doi: 10.3892/mmr.2018.8564.
DOI |
[18] |
Bae JM, Clarke JC, Rashid H, et al. Specificity protein 7 is required for proliferation and differentiation of ameloblasts and odontoblasts[J]. J Bone Mineral Res, 2018,33(6):1126-1140. doi: 10.1002/jbmr.3401.
DOI URL |
[19] |
Xiao WL, Zhang DZ, Fan CH, et al. Intermittent stretching and osteogenic differentiation of bone marrow derived mesenchymal stem cells via the p38MAPK-Osterix signaling pathway[J]. Cell Physiol Biochem, 2015,36(3):1015-1025. doi: 10.1159/000430275.
DOI URL |
[20] |
Ni S, Xiong XB, Ni XY. MgCl2 promotes mouse mesenchymal stem cell osteogenic differentiation by activating the p38/Osx/Runx2 signaling pathway[J]. Mol Med Rep, 2020,22(5):3904-3910. doi: 10.3892/mmr.2020.11487.
DOI |
[21] |
Lee HK, Lee DS, Ryoo HM, et al. The odontogenic ameloblast-associated protein (ODAM) cooperates with RUNX2 and modulates enamel mineralization via regulation of MMP-20[J]. J Cell Biochem, 2010,111(3):755-767. doi: 10.1002/jcb.22766.
DOI URL |
[22] |
Abbarin N, San Miguel S, Holcroft J, et al. The enamel protein amelotin is a promoter of hydroxyapatite mineralization[J]. J Bone Miner Res, 2015,30(5):775-785. doi: 10.1002/jbmr.2411.
DOI URL |
[23] |
Núñez SM, Chun YP, Ganss B, et al. Maturation stage enamel malformations in Amtn and Klk4 null mice[J]. Matrix Biol, 2016, 52-54(2016):219-233. doi: 10.1016/j.matbio.2015.11.007.
DOI URL |
[24] |
Lacruz RS, Nakayama Y, Holcroft J, et al. Targeted overexpression of amelotin disrupts the microstructure of dental enamel[J]. PLoS One, 2012,7(4):e35200. doi: 10.1371/journal.pone.0035200.
DOI URL |
[25] |
Yamazaki H, Tran B, Beniash E, et al. Proteolysis by MMP20 prevents aberrant mineralization in secretory enamel[J]. J Dent Res, 2019,98(4):468-475. doi: 10.1177/0022034518823537.
DOI PMID |
[26] |
Smith C, Kirkham J, Day PF, et al. A fourth KLK4 mutation is associated with enamel hypomineralisation and structural abnormalities[J]. Front Physiol, 2017,8:333. doi: 10.3389/fphys.2017.00333.
DOI URL |
[27] |
Xie X, Liu C, Zhang H, et al. Abrogation of epithelial BMP2 and BMP4 causes Amelogenesis Imperfecta by reducing MMP20 and KLK4 expression[J]. Sci Rep, 2016,6:25364. doi: 10.1038/srep25364.
DOI URL |
[28] |
Gj X, Cai S, Wu JB. Effect of insulin-like growth factor-1 on bone morphogenetic protein-2 expression in hepatic carcinoma SMMC7721 cells through the p38 MAPK signaling pathway[J]. Asian Pac J Cancer Prev, 2012,13(4):1183-1186. doi: 10.7314/apjcp.2012.13.4.1183.
DOI URL |
[29] |
Suto M, Nemoto E, Kanaya S, et al. Nanohydroxyapatite increases BMP-2 expression via a p38 MAP kinase dependent pathway in periodontal ligament cells[J]. Arch Oral Biol, 2013,58(8):1021-1028. doi: 10.1016/j.archoralbio.2013.02.014.
DOI URL |
[1] | CHEN Hongxing,LIU Siyao,HUANG Yuting,PAN Shuang. Stress distribution of composite resin filling in Class I cavity of molars with different cavosurface angle [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(9): 596-603. |
[2] | ZUO Xinhui,LI Jun,HAN Xiangzhen,LIU Xiaoyuan,HE Huiyu. Effects of hypoxia inducible factor-1α on osteogenic differentiation and angiogenesis related factors of bone marrow mesenchymal stem cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(7): 449-455. |
[3] | ZHOU Meixi,ZHU Linhong. Factors affecting tooth whitening effect [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(6): 428-432. |
[4] | ZHOU Anqi,LIU Jiayi,JIA Yinan,XIANG Lin. Research progress on the Hippo-YAP signaling pathway mediated osteoimmunology in modulating implant osseointegration [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(5): 334-339. |
[5] | ZHENG Jiawei, ZHAO Zeliang. Progress in evidence-based research on the clinical treatment of infantile hemangioma and vascular malformations [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(11): 721-732. |
[6] | ZHAO Junjie,TAN Baochun,LI Lili,ZHANG Yangheng,CHEN Sheng. Effects of ultrasonic subgingival scaling and root planing with a periodontal endoscope on the root surface [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(10): 684-688. |
[7] | GU Xi,ZHANG Liya,CHEN Ruixue,LI Ya,YANG Senhao,LI Chunnian. Esthetic evaluation of resin infiltration for the treatment of molar-incisor hypomineralization [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(10): 689-694. |
[8] | QIN Qing,SONG Yang,LIU Jia,LI Qiang. Effects of casein kinase 2 interacting protein-1 on the osteogenic differentiation ability of human periodontal ligament stem cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(7): 421-426. |
[9] | ZHOU Tao,WU Peiyao,YANG Yuqing,CAO Zhiwei,XIE Liang. Research progress on the distribution of primary cilia and related signaling pathways involved in odontogenesis [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(5): 318-321. |
[10] | LIU Haotian,LI Huihui,LIU Shanshan. Research progress on the relationship between enamel-related gene polymorphisms and caries susceptibility [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(2): 123-126. |
[11] | LIAO Chunhui,LI Mingfei,YE Jinmei,PENG Wei,CHEN Songling. The regulatory mechanisms of IGF1 in the osteogenic differentiation of canine MSMSCs via BMP2-Smad1/5 signaling pathway [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(1): 16-23. |
[12] | XIONG Kaixin,ZOU Ling. Research progress in laser treatment of dentin hypersensitivity [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(7): 472-476. |
[13] | LIU Ying,YANG Jing,LI Yazhen,YAN Xiao,ZHANG Qiang,REN Dapeng,YANG Fang,YUAN Xiao,GUO Qingyuan. Effects of silencing the HIF-1α gene on the expression of BSP and osterix in rat BMMSCs under tension [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(5): 287-292. |
[14] | LU Lizhu, QIU Hongtian, CAI Qiuyun, ZHOU Wei. Progress in clinical treatment and etiology of gingival recession [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(5): 331-336. |
[15] | ZHENG Jiawei,ZHAO Zeliang. Progress in the genetics research of infantile hemangioma and vascular malformations [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(12): 749-756. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
This work is licensed under Creative Commons Attribution 3.0 License.