Journal of Prevention and Treatment for Stomatological Diseases ›› 2021, Vol. 29 ›› Issue (8): 535-540.doi: 10.12016/j.issn.2096-1456.2021.08.005

• Basic Study • Previous Articles     Next Articles

The effect of silencing the endoplasmic reticulum stress-related protein calnexin on the proliferation, invasion, and migration of tongue squamous cell carcinoma cells

ZHONG qijian1(),JIN Tingting2,PENG Yu3,CHEN Weixiong2(),LI Jinsong3()   

  1. 1. Department of Stomatology, University of Chinese Academy Sciences-Shenzhen Hospital, Shenzhen 518106, China
    2. Department of Stomatology, Longgang District Central Hospital, Affliated to Guangzhou University of Traditional Chinese Medicine, Shenzhen 518116, China
    3. Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510120, China
  • Received:2021-01-25 Revised:2021-03-01 Online:2021-08-20 Published:2021-05-13
  • Contact: Weixiong CHEN,Jinsong LI E-mail:546276915@qq.com;lijinsong1967@163.com
  • Supported by:
    National Natural Science Foundation of China(82002861);Guangdong Basic and Applied Basic Research Foundation(2019A1515110124);China Postdoctoral Science Foundation(2019M663114)

Abstract:

Objective To investigate the effect of silencing the endoplasmic reticulum stress-related protein calnexin on the proliferation, invasion, and migration of tongue squamous cell carcinoma cells. Methods Calnexin siRNA was transfected into SCC-9 and SCC-25 tongue squamous cell carcinoma cells, and the expression of calnexin was detected by qRT-PCR. The silencing effect of calnexin siRNA was further verified by Western blotting. CCK-8 assay was applied to detect the effect of silencing calnexin on the proliferation of tongue squamous cell carcinoma cells; Transwell assay was used to detect the effect of silencing calnexin on the invasion and migration of tongue squamous cell carcinoma cells. Results qRT-PCR showed that calnexin siRNA could effectively downregulate the expression of calnexin. Western blot analysis further confirmed the silencing effect of calnexin siRNA on calnexin. The CCK-8 assay showed that silencing calnexin expression on the 4th and 5th days could inhibit the proliferation of tongue squamous cell carcinoma cells, and the difference was statistically significant (P < 0.01). The Transwell assay showed that knockdown of calnexin could inhibit the invasion and migration of tongue squamous cell carcinoma cells (P < 0.001). Conclusion Knockdown of calnexin can inhibit the proliferation, invasion, and migration of tongue squamous cell carcinoma cells.

Key words: endoplasmic reticulum stress, calnexin, tongue squamous cell carcinoma, SCC-9 cells, SCC-25 cells, proliferation, invasion, migration, siRNA, therapeutic target

CLC Number: 

  • R78

Table 1

Calnexin control and interference sequences"

Direction Sequences
NC Positive-sense strand 5′-UUCUCCGAACGUGUCACGUTT-3′
Antisense strand 5′- ACGUGACACGUUCGGAGAATT-3′
si-CNX1 Positive-sense strand 5′- CAAGGUUACUUACAAAGCUTT-3′
Antisense strand 5′- AGCUUUGUAAGUAACCUUGTT-3′
si-CNX2 Positive-sense strand 5′- CCAAGCCUCUCAUUGUUCATT-3′
Antisense strand 5′- UGAACAAUGAGAGGCUUGGTT-3′

Table 2

Sequences of the qRT-PCR primers"

Direction Sequences
Calnexin Upstream 5′-GAAGGGAAGTGGTTGCTGTG-3′
Downstream 5′- CGTCTTTCTTGGCTTTGGAT-3′
GAPDH Upstream 5′-GGACCTGACCTGCCGTCTAG-3′
Downstream 5′-GTAGCCCAGGATGCCCTTGA-3′

Figure 1

Expression of calnexin in tongue squamous cell carcinoma cells transfected with siRNA a: qRT-PCR showing calnexin expression, **: P < 0.001 vs. NC; b: Western blots showing calnexin expression"

Figure 2

Knockdown of calnexin inhibited the proliferation of tongue squamous cell carcinoma cells a: the proliferation of SCC-9 cells was detected using a CCK-8 assay; b: the proliferation of SCC-25 cells was detected using a CCK-8 assay; *: P < 0.01 vs. NC; **: P < 0.001 vs. NC"

Figure 3

Knockdown of calnexin inhibited the invasion and migration of tongue squamous cell carcinoma cells a: knockdown of calnexin inhibited the invasion and migration of SCC-9 cells (× 100); b: knockdown of calnexin inhibited the invasion and migration of SCC-25 cells (× 100); **: P < 0.001 vs. NC"

[1] Zanoni DK, Montero PH, Migliacci JC, et al. Survival outcomes after treatment of cancer of the oral cavity (1985-2015)[J]. Oral Oncol, 2019,90:115-121. doi: 10.1016/j.oraloncology.2019. 02.001.
doi: 10.1016/j.oraloncology.2019. 02.001
[2] 王安训. 表观遗传与口腔鳞状细胞癌[J]. 口腔疾病防治, 2020,28(10):613-622. doi: 10.12016/j.issn.2096-1456.2020. 10.001.
doi: 10.12016/j.issn.2096-1456.2020. 10.001
Wang AX. Epigenetic and oral squamous cell carcinoma[J]. J Prev Treat Stomatol Dis, 2020,28(10):613-622. doi: 10.12016/j.issn.2096-1456.2020.10.001.
doi: 10.12016/j.issn.2096-1456.2020. 10.001
[3] Wang Y, Wang K, Jin Y, et al. Endoplasmic reticulum proteostasis control and gastric cancer[J]. Cancer Lett, 2019,449:263-271. doi: 10.1016/j.canlet.2019.01.034.
doi: 10.1016/j.canlet.2019.01.034 pmid: WOS:000463130200026
[4] Saito A, Imaizumi K. Unfolded protein response-dependent communication and contact among endoplasmic reticulum, mitochondria, and plasma membrane[J]. Int J Mol Sci, 2018,19(10):3215. doi: 10.3390/ijms19103215.
doi: 10.3390/ijms19103215
[5] Siwecka N, Rozpędek W, Pytel D, et al. Dual role of endoplasmic reticulum stress-mediated unfolded protein response signaling pathway in carcinogenesis[J]. Int J Mol Sci, 2019,20(18):4354. doi: 10.3390/ijms20184354.
doi: 10.3390/ijms20184354
[6] Cheng X, Feng H, Wu H, et al. Targeting autophagy enhances apatinib-induced apoptosis via endoplasmic reticulum stress for human colorectal cancer[J]. Cancer Lett, 2018,431:105-114. doi: 10.1016/j.canlet.2018.05.046.
doi: 10.1016/j.canlet.2018.05.046
[7] Chen X, Iliopoulos D, Zhang Q, et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway[J]. Nature, 2014,508(7494):103-107. doi: 10.1038/nature13119.
doi: 10.1038/nature13119 pmid: 24670641
[8] Kwon D, Koh J, Kim S, et al. Overexpression of endoplasmic reticulum stress-related proteins, XBP1s and GRP78, predicts poor prognosis in pulmonary adenocarcinoma[J]. Lung Cancer, 2018,122:131-137. doi: 10.1016/j.lungcan.2018.06.005.
doi: 10.1016/j.lungcan.2018.06.005
[9] Qin XY, Su T, Yu W, et al. Lipid desaturation-associated endoplasmic reticulum stress regulates MYCN gene expression in hepatocellular carcinoma cells[J]. Cell Death Dis, 2020,11(1):66. doi: 10.1038/s41419-020-2257-y.
doi: 10.1038/s41419-020-2257-y
[10] Sheng X, Nenseth HZ, Qu S, et al. IRE1α-XBP1s pathway promotes prostate cancer by activating c-MYC signaling[J]. Nat Commun, 2019,10(1):323. doi: 10.1038/s41467-018-08152-3.
doi: 10.1038/s41467-018-08152-3 pmid: 30679434
[11] Oakes S. Endoplasmic reticulum stress signaling in cancer cells[J]. Am J Pathol, 2020,190(5):934-946. doi: 10.1016/j.ajpath.2020.01.010.
doi: 10.1016/j.ajpath.2020.01.010
[12] Chen Y, Ma D, Wang X, et al. calnexin impairs the antitumor immunity of CD4(+) and CD8(+) T cells[J]. Cancer Immunol Res, 2019,7(1):123-135. doi: 10.1158/2326-6066.CIR-18-0124.
doi: 10.1158/2326-6066.CIR-18-0124
[13] Gutiérrez T, Qi H, Yap MC, et al. The ER chaperone calnexin controls mitochondrial positioning and respiration[J]. Sci Signal, 2020, 13(638):eaax6660. doi: 10.1126/scisignal.aax6660.
doi: 10.1126/scisignal.aax6660
[14] Tian T, Lv X, Pan G, et al. Long noncoding RNA MPRL promotes mitochondrial fission and cisplatin chemosensitivity via disruption of pre-miRNA processing[J]. Clin Cancer Res, 2019,25(12):3673-3688. doi: 10.1158/1078-0432.CCR-18-2739.
doi: 10.1158/1078-0432.CCR-18-2739 pmid: 30885939
[15] Wang M, Kaufman RJ. The impact of the endoplasmic reticulum protein-folding environment on cancer development[J]. Nat Rev Cancer, 2014,14(9):581-597. doi: 10.1038/nrc3800.
doi: 10.1038/nrc3800
[16] Forrester A, De Leonibus C, Grumati P, et al. A selective ER-phagy exerts procollagen quality control via a calnexin-FAM134B complex[J]. EMBO J, 2019,38(2):e99847. doi: 10.15252/embj.201899847.
doi: 10.15252/embj.201899847
[17] Kobayashi M, Nagashio R, Jiang SX, et al. calnexin is a novel sero-diagnostic marker for lung cancer[J]. Lung Cancer, 2015,90(2):342-345. doi: 10.1016/j.lungcan.2015.08.015.
doi: 10.1016/j.lungcan.2015.08.015 pmid: 26344721
[18] Ryan D, Carberry S, Murphy ÁC, et al. calnexin, an ER stress-induced protein, is a prognostic marker and potential therapeutic target in colorectal cancer[J]. J Transl Med, 2016,14(1):196. doi: 10.1186/s12967-016-0948-z.
doi: 10.1186/s12967-016-0948-z
[19] 张晓海, 张洪涛, 胡孝定, 等. 沉默calnexin基因表达对胃癌细胞SGC-7901内质网应激凋亡及其信号通路的影响[J]. 浙江医学, 2017,39(4):259-262, 276. doi: 10.12056/j.issn.1006-2785.2017.39.4.2016-1304.
doi: 10.12056/j.issn.1006-2785.2017.39.4.2016-1304
Zhang XH, Zhang HT, Hu XD, et al. Effects of calnexin silencing on endoplasmic reticulum strss-apoptosis and its signaling pathway in gastric cancer cell line SGC-7901[J]. Zhejiang Med J, 2017,39(4):259-262, 276. doi: 10.12056/j.issn.1006-2785.2017. 39.4.2016-1304.
doi: 10.12056/j.issn.1006-2785.2017.39.4.2016-1304
[20] 孙为增, 林国雄, 林海. 沉默钙连蛋白对人肾母细胞瘤细胞凋亡及内质网应激、JNK信号通路的影响[J]. 山东医药, 2017,57(40):22-25. doi: 10.3969/j.issn.1002-266X.2017.40.006.
doi: 10.3969/j.issn.1002-266X.2017.40.006
Sun WZ, Lin GX, Lin H. Effects of silencing calnexin on apoptosis, endoplasmic reticulum stress, and JNK signaling pathway of human nephroblastoma cells[J]. Shandong Med J, 2017,57(40):22-25. doi: 10.3969/j.issn.1002-266X.2017.40.006.
doi: 10.3969/j.issn.1002-266X.2017.40.006
[21] Ros M, Nguyen AT, Chia J, et al. ER-resident oxidoreductases are glycosylated and trafficked to the cell surface to promote matrix degradation by tumour cells[J]. Nat Cell Biol, 2020,22(11):1371-1381. doi: 10.1038/s41556-020-00590-w.
doi: 10.1038/s41556-020-00590-w
[22] Alam A, Taye N, Patel S, et al. SMAR1 favors immunosurveillance of cancer cells by modulating calnexin and MHC I expression[J]. Neoplasia, 2019,21(10):945-962. doi: 10.1016/j.neo.2019.07.002.
doi: 10.1016/j.neo.2019.07.002
[1] WANG Qianqian,DING Dandan,DING Xiang,HAN Rui,HAN Yingying,ZHOU Meiyun,XU Jincheng. Expression of Bex1 and NF-kBp65 in tongue squamous cell carcinoma and its significance [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(6): 383-387.
[2] LI Peihan,LANG Kai,SONG Wen. Construction of a curcumin-siRNA co-delivery system based on mesoporous silica and its effect on M2-type polarization of macrophages [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(5): 306-313.
[3] LI Ming,NAN Xinrong,YUAN Zhenying,TANG Zhangui. Accuracy analysis of MRI in the depth of invasion assessment of tongue squamous cell carcinoma [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(5): 322-327.
[4] WANG Min,JIANG Nan,ZHU Songsong. A novel biomimetic micro/nano hierarchical interface of titanium enhances adhesion, proliferation and osteogenic differentiation of bone marrow mesenchymal cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(4): 226-233.
[5] YAN Shanyu,MEI Hongxiang,LI Juan. Role of mesenchymal stem cells migration in bone injury repair [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(12): 854-858.
[6] SUN Jingxuan,LI Yanping,PAN Shuang,HE Lina,SUN Xiangyu,ZHANG Shuang,NIU Yumei. Effects of graphene on the proliferation, migration and morphology of dental pulp stem cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(10): 656-662.
[7] YANG Jin,WU Feifei,GAO Qinghong,LI Xiaoyu,MANABU Kato,CHENG Ran,ZHOU Hongmei. Effects of TGF-β1 on the migration of oral cancer-associated fibroblasts in two and three dimensional co-culture models [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(9): 562-568.
[8] MA Lingzhi,SHI Jiaozhuang,GE Wenbin,ZHANG Kun,YU Bing,LIU Yali. Effect of miR-21 on the proliferation and osteogenic differentiation of human periodontal ligament stem cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(9): 569-574.
[9] QIN Qing,SONG Yang,LIU Jia,LI Qiang. Effects of casein kinase 2 interacting protein-1 on the osteogenic differentiation ability of human periodontal ligament stem cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(7): 421-426.
[10] CAO Shunshun,WANG Xiaolong,SHU Chuanji,SHAO Jianjie. Inhibitory effect of celecoxib on Cal-27 tongue squamous cell carcinoma cell proliferation [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(7): 427-432.
[11] WU Fayin,XU Haili. Effect and mechanism of allicin combined with 5-fluorouracil on proliferation and apoptosis of the MEC-1 cell line in mucoepidermoid carcinoma [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(6): 355-360.
[12] ZHANG Haifeng,NAN Xinrong,HUA Yongqing. Research progress on the consistency and evaluation factors of cervical lymphatic metastasis in early tongue cancer [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(5): 336-340.
[13] WU Donghui,ZHU Yunying,LIANG Jianqiang,LIN Zhaoyu,LI Jinsong. Study on lncRNA ADAMTS9-AS2 promoting invasion and metastasis of salivary adenoid cystic carcinoma [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(4): 214-218.
[14] ZENG Fantao,YU Dongsheng. Knockdown of circ_0001273 inhibits the proliferation, migration and invasion of oral squamous cell carcinoma cells [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(3): 153-157.
[15] LIAN Keqian,ZHANG Xin,ZHOU Jieyu,LIAO Yanfen,SI Shanshan. Biocompatibility of bone marrow mesenchymal cells on polyetheretherketone and titanium surfaces in vitro [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(2): 73-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. journal1, 2016, 24(1): 58 -60 .
[2] Ming-wen FAN. Procedure refinement, easy operation--root canal treatment progress[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(3): 133 -136 .
[3] Juan LI,Ting HUANG,Wen XUE,Hai-yan LI. Clinical efficacy of basic periodontal therapy combined with local medication for erosive oral lichen planus[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(3): 162 -165 .
[4] Yan-mei YAN,Tao HE,Can-can MA,Pin-xuan ZHENG,Qi LIU. Research progress of the influence of vitamin D on periodontitis[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(2): 114 -117 .
[5] Zeng-wen YUE,Jin-zhong LIU,Bao-yu ZHU,Zheng-guang CHEN. Expression of transketolase-like protein 1 in human tongue carcinoma and its meaning[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(3): 150 -153 .
[6] . [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(5): 317 -320 .
[7] Ming CHEN,Xi CHEN,Zhen-ting ZHANG. The precision comparison of the denture occlusal plane preparation by the occlusal plane plate between experienced and newly-graduated dentists[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(3): 173 -176 .
[8] Zhen ZHANG,Hong-yu ZHAO. Chronic periodontitis and its related microRNA[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2016, 24(6): 378 -380 .
[9] Hong-chang LAI,Jun-yu SHI. Maxillary sinus floor elevation[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(1): 8 -12 .
[10] Pin ZHOU, Yang-fei LI. MRI study of temporomandibular joint disc position in asymptomatic volunteers[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2017, 25(4): 239 -244 .
This work is licensed under a Creative Commons Attribution 3.0 License.