Journal of Prevention and Treatment for Stomatological Diseases ›› 2021, Vol. 29 ›› Issue (9): 596-603.DOI: 10.12016/j.issn.2096-1456.2021.09.004
• Basic Study • Previous Articles Next Articles
CHEN Hongxing(),LIU Siyao,HUANG Yuting,PAN Shuang(
)
Received:
2020-11-23
Online:
2021-09-20
Published:
2021-06-18
Contact:
Shuang PAN
通讯作者:
潘爽
作者简介:
陈红星,医师,硕士研究生,Email: CLC Number:
CHEN Hongxing,LIU Siyao,HUANG Yuting,PAN Shuang. Stress distribution of composite resin filling in Class I cavity of molars with different cavosurface angle[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(9): 596-603.
陈红星,刘思瑶,黄雨亭,潘爽. 不同洞缘角磨牙Ⅰ类洞复合树脂充填的应力分布[J]. 口腔疾病防治, 2021, 29(9): 596-603.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.kqjbfz.com/EN/10.12016/j.issn.2096-1456.2021.09.004
Figure 1 Three-dimensional solid models of cavosurface angles in the three groups a: food modeling on the occlusal surfaces, the green part is the food lump; b: the cavosurface angle is 90°; c: the cavosurface angle is 120°; d: the cavosurface angle is 135°
Item | Number of nodes | Number of elements | Element type |
---|---|---|---|
Enamel | 20 377 | 12 733 | C3D10 |
Dentin | 34 740 | 22 037 | C3D10 |
Contical bone | 13 957 | 7 927 | C3D10 |
Spongious bone | 41 843 | 26 283 | C3D10 |
Periodontal ligament | 26 489 | 13 180 | C3D10M |
Food bolus | 22 136 | 13 996 | C3D10 |
Group A resin | 10 447 | 6 407 | C3D10 |
Group B resin | 9 711 | 6 189 | C3D10 |
Group C resin | 20 392 | 12 968 | C3D10 |
Table 1 Mesh types and the number of nodes and elements in each model
Item | Number of nodes | Number of elements | Element type |
---|---|---|---|
Enamel | 20 377 | 12 733 | C3D10 |
Dentin | 34 740 | 22 037 | C3D10 |
Contical bone | 13 957 | 7 927 | C3D10 |
Spongious bone | 41 843 | 26 283 | C3D10 |
Periodontal ligament | 26 489 | 13 180 | C3D10M |
Food bolus | 22 136 | 13 996 | C3D10 |
Group A resin | 10 447 | 6 407 | C3D10 |
Group B resin | 9 711 | 6 189 | C3D10 |
Group C resin | 20 392 | 12 968 | C3D10 |
Item | Young’s modulus (MPa) | Poisson’s ratio | Linear shrinkage (%) | Linear thermal expansion coefficient | Thicknesses (mm) |
---|---|---|---|---|---|
Enamel | 80 000 | 0.30 | |||
Dentin | 18 000 | 0.23 | |||
Resin composite | 12 000 | 0.25 | 1 | 0.003 3 | |
Adhesive bonding | 4 000 | 0.30 | 1 | 0.003 3 | 0.01 |
Food bolus | 3 410 | 0.10 | |||
Pulp | 2 | 0.48 | |||
Spongious bone | 1 370 | 0.30 | |||
Contical bone | 13 700 | 0.30 | |||
Periodontal ligament | 68.9 | 0.45 |
Table 2 Mechanical properties of materials
Item | Young’s modulus (MPa) | Poisson’s ratio | Linear shrinkage (%) | Linear thermal expansion coefficient | Thicknesses (mm) |
---|---|---|---|---|---|
Enamel | 80 000 | 0.30 | |||
Dentin | 18 000 | 0.23 | |||
Resin composite | 12 000 | 0.25 | 1 | 0.003 3 | |
Adhesive bonding | 4 000 | 0.30 | 1 | 0.003 3 | 0.01 |
Food bolus | 3 410 | 0.10 | |||
Pulp | 2 | 0.48 | |||
Spongious bone | 1 370 | 0.30 | |||
Contical bone | 13 700 | 0.30 | |||
Periodontal ligament | 68.9 | 0.45 |
Figure 2 Overall displacement and equivalent stress distribution in the repair models of the three groups a-c: overall displacement of equivalent stress, with the maximum displacement occurring in the composite resin part; d-f: overall distribution of equivalent stress, with the stress mainly concentrated in the enamel at the cavosurface and cervical enamel; g: maximum stress of the repair model; group A: the cavosurface angle is 90°; group B: the cavosurface angle is 120°; group C: the cavosurface angle is 135°
Figure 3 Equivalent stress distribution of adhesives in the three groups a-c: distribution of equivalent stress of adhesives; d-f: distribution of equivalent stress of adhesives in the buccolingual direction, with the maximum stress concentrated at the angle of the axial medullary line at the bottom of the cavity; g: maximum stress of the adhesive repair model; group A: the cavosurface angle is 90°; group B: the cavosurface angle is 120°; group C: the cavosurface angle is 135°
Figure 4 Equivalent stress distribution of composite resin in the three groups a-c: distribution of equivalent stress of composite resin, with the maximum stress in each restoration model mainly concentrated at the edge of the restoration material; d-f: distribution of equivalent stress of composite resin in the buccolingual direction; g: maximum stress of composite resin; group A: the cavosurface angle is 90°; group B: the cavosurface angle is 120°; group C: the cavosurface angle is 135°
Figure 5 Equivalent stress distribution of enamel in the three groups a-c: distribution of equivalent stress of enamel, with the maximum stress in each restoration model mainly concentrated in the enamel at the cavosurface and the cervical enamel-dentin interface; d-f: distribution of equivalent stress of enamel in the buccolingual direction; g: maximum stress of enamel; group A: the cavosurface angle is 90°; group B: the cavosurface angle is 120°; group C: the cavosurface an-gle is 135°
Figure 6 Equivalent stress distribution of dentin in the three groups a-c: distribution of equivalent stress of dentin; d-f: distribution of equivalent stress of dentin in the buccolingual direction, with the maximum stress concentrated at the cavity bottom above the pulp chamber top and the enamel-dentin interface along the lateral wall of the cavity; g: maximum stress of dentin; group A: the cavosurface angle is 90°; group B: the cavosurface angle is 120°; group C: the cavosurface angle is 135°
[1] |
Wright JT, Tampi MP, Graham L, et al. Sealants for preventing and arresting pit-and-fissure occlusal caries in primary and permanent molars: a systematic review of randomized controlled trials--a report of the American Dental Association and the American Academy of Pediatric Dentistry[J]. J Am Dent Assoc, 2016, 147(8):631-645. doi: 10.1016/j.adaj.2016.06.003.
DOI URL PMID |
[2] |
Carvalho JC, Dige I, Machiulskiene V, et al. Occlusal caries: biological approach for its diagnosis and management[J]. Caries Res, 2016, 50(6):527-542. doi: 10.1159/000448662.
DOI URL |
[3] |
Mehrabkhani M, Mazhari F, Sadeghi S, et al. Effects of sealant, viscosity, and bonding agents on microleakage of fissure sealants: an in vitro study[J]. Eur J Dent, 2015, 9(4):558-563. doi: 10.4103/1305-7456.172631.
DOI URL PMID |
[4] |
Khosravi K, Mousavinasab SM, Samani MS. Comparison of microleakage in Class Ⅱ cavities restored with silorane-based and methacrylate-based composite resins using different restorative techniques over time[J]. Dent Res J (Isfahan), 2015, 12(2):150-156.
PMID |
[5] |
Soares GP, Ambrosano GM, Da LM, et al. Effect of light polymerization time, mode, and thermal and mechanical load cycling on microleakage in resin composite restorations[J]. Lasers Med Sci, 2014, 29(2):545-550. doi: 10.1007/s10103-012-1244-7.
DOI URL |
[6] | Pereira JR, Júnior LC, Só MV, et al. Effect of thermocycling and varying polymerization techniques on the restorative interface of class V cavities restored with different composite resin systems[J]. J Clin Exp Dent, 2017, 9(3):e405-e409. doi: 10.4317/jced.53481. |
[7] |
Ausiello P, Ciaramella S, Fabianelli A, et al. Mechanical behavior of bulk direct composite versus block composite and lithium disilicate indirect Class Ⅱ restorations by CAD-FEM modeling [J]. Dent Mater, 2017, 33(6):690-701. doi: 10.1016/j.dental.2017.03.014.
DOI URL PMID |
[8] | Pai S, Naik N, Patil V, et al. Evaluation and comparison of stress distribution in restored cervical lesions of mandibular premolars: three-dimensional finite element analysis[J]. J Int Soc Prev Community Dent, 2019, 9(6):605-611. doi: 10.4103/jispcd.JISPCD_301_19. |
[9] |
Anatavara S, Sitthiseripratip K, Senawongse P. Stress relieving behaviour of flowable composite liners: a finite element analysis[J]. Dent Mater J, 2016, 35(3):369-378. doi: 10.4012/dmj.2015-204.
DOI URL PMID |
[10] |
Ausiello P, Ciaramella S, Di Rienzo A, et al. Adhesive class I restorations in sound molar teeth incorporating combined resin-composite and glass ionomer materials: CAD-FE modeling and analysis[J]. Dent Mater, 2019, 35(10):1514-1522. doi: 10.1016/j.dental.2019.07.017.
DOI URL PMID |
[11] | Ausiello P, Ciaramella S, Garcia-Godoy F, et al. The effects of cavity-margin-angles and bolus stiffness on the mechanical behavior of indirect resin composite class Ⅱ restorations[J]. Dent Mater, 2017, 33(1): e39-e47. doi: 10.1016/j.dental.2016.11.002. |
[12] |
Ausiello P, Ciaramella S, Garcia-Godoy F, et al. Stress distribution of bulk-fill resin composite in class Ⅱ restorations[J]. Am J Dent, 2017, 30(4):227-232.
PMID |
[13] |
Ausiello P, Ciaramella S, Martorelli M, et al. CAD-FE modeling and analysis of class Ⅱ restorations incorporating resin-composite, glass ionomer and glass ceramic materials[J]. Dent Mater, 2017, 33(12):1456-1465. doi: 10.1016/j.dental.2017.10.010.
DOI URL PMID |
[14] |
Piva AD, Tribst JM, Borges AS, et al. CAD-FEA modeling and analysis of different full crown monolithic restorations[J]. Dent Mater, 2018, 34(9):1342-1350. doi: 10.1016/j.dental.2018.06.024.
DOI URL |
[15] | Homaei E, Jin XZ, Pow E, et al. Numerical fatigue analysis of premolars restored by CAD/CAM ceramic crowns[J]. Dent Mater, 2018, 34(7): e149-e157. doi: 10.1016/j.dental.2018.03.017. |
[16] |
Huang XQ, Hong NR, Zou LY, et al. Estimation of stress distribution and risk of failure for maxillary premolar restored by occlusal veneer with different CAD/CAM materials and preparation designs[J]. Clin Oral Investig, 2020, 24(9):3157-3167. doi: 10.1007/s00784-019-03190-7.
DOI URL |
[17] |
Rodrigues MP, Soares P, Gomes M, et al. Direct resin composite restoration of endodontically-treated permanent molars in adolescents: bite force and patient-specific finite element analysis[J]. J Appl Oral Sci, 2020, 28:e20190544. doi: 10.1590/1678-7757-2019-0544.
DOI URL |
[18] |
Veloso SR, Lemos CA, De Moraes SL, et al. Clinical performance of bulk-fill and conventional resin composite restorations in posterior teeth: a systematic review and meta-analysis[J]. Clin Oral Investig, 2019, 23(1):221-233. doi: 10.1007/s00784-018-2429-7.
DOI URL |
[19] | Смеянов ЮВ, Лахтин ЮВ. The influence of stress-strain processes in tooth enamel on the marginal permeability of classⅠrestorations with a different design of the edge of the carious cavity[J]. Wiad Lek, 2018, 71(1pt2):135-139. |
[20] |
Correia AO, Pereira VM, Bresciani E, et al. Influence of cavosurface angle on the stress concentration and gaps formation in class V resin composite restorations[J]. J Mech Behav Biomed Mater, 2019, 97:272-277. doi: 10.1016/j.jmbbm.2019.05.034.
DOI URL |
[21] |
Meurer JC, Rizzante F, Maenossono RM, et al. Effect of cavosurface angle beveling on the exposure angle of enamel prisms in different cavity sizes[J]. Microsc Res Tech, 2020, 83(3):304-309. doi: 10.1002/jemt.23415.
DOI URL |
[22] |
Soares PV, Machado AC, Zeola LF, et al. Loading and composite restoration assessment of various non-carious cervical lesions morphologies--3D finite element analysis[J]. Aust Dent J, 2015, 60(3):309-316. doi: 10.1111/adj.12233.
DOI URL PMID |
[23] | Kowalczyk P. Influence of the shape of the layers in photo-cured dental restorations on the shrinkage stress peaks-FEM study[J]. Dent Mater, 2009, 25(12): e83-e91. doi: 10.1016/j.dental.2009.07.014. |
[24] |
Rodrigues FP, Silikas N, Watts DC, et al. Finite element analysis of bonded model Class I ′restorations′ after shrinkage[J]. Dent Mater, 2012, 28(2):123-132. doi: 10.1016/j.dental.2011.10.001.
DOI URL PMID |
[25] |
Cornacchia TP, Las CE, Cimini CJ, et al. 3D finite element analysis on esthetic indirect dental restorations under thermal and mechanical loading[J]. Med Biol Eng Comput, 2010, 48(11):1107-1113. doi: 10.1007/s11517-010-0661-7.
DOI URL PMID |
[26] | Dejak B, Mlotkowski A. Three-dimensional finite element analysis of strength and adhesion of composite resin versus ceramic inlays in molars [J]. Prosthet Dent, 2008, 99(2):131-140. doi: 10.1016/S0022-3913(08)60029-3. |
[1] | HUO Jingyi,ZHAN Weisheng,HAO Liang,REN Jie,WANG Min,LUO Yun. Clinical effect of a guided resin cementation technique in the treatment of vertical food impaction [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(9): 624-628. |
[2] | HUANG Yannan,CHENG Lei. Research progress on nano-calcium phosphate modified dental materials for the prevention and treatment of dental pulp diseases [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(9): 634-637. |
[3] | LI Jiesen,LIN Zhenxiang,WU Dong,ZHENG Zhiqiang,LIN Jie. Finite element analysis of the stress distribution of dental implant crowns with different all-ceramic materials and thicknesses [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(3): 166-170. |
[4] | LIN Jie,LIN Zhenxiang,ZHENG Zhiqiang. Effects of the different materials and thicknesses on endocrown stress distribution [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(11): 740-745. |
[5] | YANG Man,ZHAO Yuan,WEI Hong,SHANG Yingnan,AN Wuyang,TIAN Hongwei. Clinical evaluation of bulk-fill composite resin combined with transparent preformed crown for aesthetic restoration of deciduous incisor [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2021, 29(1): 34-39. |
[6] | CHEN Zao,CHEN Lu,LIU Qi,WU Buling. Comparison of the interdiffusion of four self-etching adhesives in resin-aged glass-fiber-reinforced composites [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28(3): 158-162. |
[7] | CAO Tingting,GE Chunhui,ZHANG Hongyan. Influence of the shape, materials and occlusal mode of the maxillary first premolars on stress in noncarious cervical lesions [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(8): 515-521. |
[8] | Yanan LIU,Likai WANG,Sisi LIU,Hui HUI,Haifeng WANG. Comparison of polishing effects of three polishing systems on machinable composite resins [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(7): 441-445. |
[9] | DONG Limin,LI Bing,WU Xiao,NIU Jianhua. Evaluation of resin inlay restoration after root canal therapy for deciduous molars [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(5): 314-317. |
[10] | CHEN Jingping,WU Buling. Establishment and stress analysis of buccal-occlusal-lingual inlay finite element model of mandibular first molar [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(4): 241-245. |
[11] | YANG Pingzhu,WEN Xiujie,NIE Xin,ZHAO Qian,WANG Yingying,ZENG Qiuyun,ZHU Lin,Li Jun. Finite element analysis of torque control efficiency of a homemade four-curved auxiliary arch for anterior teeth [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(3): 178-184. |
[12] | YIN Zhongping,ZHANG Ying,HE Miao,TANG Xiaolei,XU Yanhua. The strength and the self-cleaning function of composite resin high strength fiber space maintainer [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(10): 634-637. |
[13] | LI Junliang,YANG Weidong. The application of three-dimensional reconstruction-based Micro-CT in the research of root canal treatment [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(1): 61-65. |
[14] | Juan ZHANG, Yaxin WANG, Chao SUN, Guangchao ZHOU, Lianfeng YANG, Daming WU. Cone-beam computed tomography evaluation of the distance between the root apex of mandibular molars and the inferior alveolar nerve canal in adults [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(3): 175-179. |
[15] | Zhongjun LIU,Zhiyong ZHANG,Ruifang KUANG,Xiongqun ZENG,Yu LU,Shuaimei XU. CBCT detection of the incidence of middle mesial canal and isthmus in the mandibular first molar [J]. Journal of Prevention and Treatment for Stomatological Diseases, 2018, 26(11): 717-721. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
This work is licensed under Creative Commons Attribution 3.0 License.